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SPIN-WAVE EFFECTS IN THE MAGNETIZATION REVERSAL 
OF A THIN FERROMAGNETIC FILM* 

ABSTRACT 

The influence of spin waves on rapid rotational magnetization reversal (switching) in a thin ferromagnetic 

film is investigated by means of a semiclassical, continuum theory which includes external, anisotropy, 

exchange, and magnetostatic (dipolar) fields. To simplify the magnetostatic field, a "thin-film approxi- 

mation" is introduced, in which the magnetization is replaced by its average over the film thickness. 

From a stochastic model for the microstructure of a polycrystalline film,   the equilibrium magnetization 

configuration M(T)is derived.    Planar fluctuations of M from  its mean direction rrT   are found which 
o 

have the characteristics of "longitudinal ripple," namely, wave vectors k parallel torn   and wavelengths 
-4 .° greater than an exchange cutoff 2irX   ~ 10      cm.   Components with wave vectors in directions other than 

±m are attenuated by magnetostatic forces, while exchange forces attenuate components with wave- 

lengths less than 2irA . The magnetization dispersion 6 [ rms angular deviation of M(T) from m ] is also 

calculated. A brief discussion is given of the uniform rotational switching mode (without spin waves), 

with particular attention to undamped and overdamped cases. From the spin-wave equations of motion, 

the spectrum applicable to a parallel resonance situation (external field in the film plane) is first ob- 

tained, and  long-wavelength magnetostatic distortion is noted.    Then the transient spin-wave response is 

calculated for a switching field H    suddenly turned on at t = 0.   It is found that if m (t) rotates faster than 
—      •    P ° longitudinal spin waves [ k 11 m (0)] can relax, the magnetization  goes through a transient state of high 

° 2. 
magnetostatic  energy,   and a  spin-wave  reaction  torque (proportional   to 6   ) is exerted on  the  uniform 

mode. If H is less rhan a critical field H , the reaction torque at some point in the switching process 

is greater than the reversing torque and the uniform mode becomes locked; rotational reversal cannot 

proceed until initially longitudinal spin waves have relaxed into components propagating in the instan- 

taneous direction of m (t).    Such a highly damped process is suggestive of the noncoherent reversal mode 

observed in thin films.    For H    > H     ,   reversal   takes place by a modified uniform rotation;   H       may 
p        pc pc 

therefore be identified as the threshold field for coherent rotation.   The calculated dependence of H      on 
pc 

a bias field compares favorably with experiment. The 6-dependence, if 6 can be measured independ- 

ently, should provide a crucial test of the theory. 

Accepted for the Air Force 
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* This report is based on a thesis of the same title submitted in partial fulfillment of the requirements for 
the degree of Doctor of Philosophy in the Department of Physics at Harvard University. 
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SPIN-WAVE  EFFECTS IN THE  MAGNETIZATION REVERSAL 

OF A THIN FERROMAGNETIC  FILM 

I.    INTRODUCTION 

A.    MAGNETIZATION REVERSAL AND THIN  FILMS: 
EXPERIMENTAL BACKGROUND 

In the past decade considerable interest has arisen in the phenomenon of magnetization 
reversal in ferromagnetic media,   i.e.,   an irreversible change in the direction of magnetization 

following the application of a pulse magnetic field.    Although this interest received its initial 
impetus from the purely practical possibility of ferromagnetic storage elements for high-speed 

computers,   it soon became apparent that the physical processes involved were either imperfectly 
understood or else completely unknown.    The basic distinction between magnetization reversal, 
or switching,   on the one hand,   and various magnetic resonance phenomena,   which are generally 

much better understood, on the other, is that the former involves large displacements of the mag- 
netization  M   from its equilibrium direction.    How   M  returns to equilibrium is the problem to 
which we shall devote ourselves in this work. 

In particular,  we shall be concerned with magnetization reversal in thin films,   for the re- 

sultant theoretical simplicity seems well worth the loss in generality.    Furthermore,   experimental 
results with thin films tend to be consistent and unambiguous,   in contrast to the somewhat confused 

situation with respect to switching in bulk ferromagnets.    Among the significant properties of 

thin films are:   (a) the shape demagnetizing field confines   M   to the film plane or nearly so (in 

the absence of a strong field or easy axis normal to the plane);   (b) eddy-current effects in ferro- 
magnetic metals may be eliminated by choosing a film thickness much less than the skin depth; 

(c) the equilibrium magnetic configuration may be directly observed since it is invariably the 
o 

same as the surface configuration;   (d) the typically small crystallite size (~300 A) of polycrys- 
talline films,   in conjunction with (a),   results in a remanent state which is very nearly single- 
domain;   (e) single-crystal films of various ferromagnetic metals and nonmetals may be studied 
(these are usually epitaxially grown);   (f) low anisotropy (a few oersteds)  is readily obtained, 

thus allowing magnetization reversal to take place in low,   fast-rise fields. 
1 

Since the early experiments of Blois,   many workers have studied pulse switching in thin 
2-10 films, usually of Permalloy (Ni-Fe alloy  near  the  zero  magnetostriction  0.83-0.17  com- 

position),   and possessing uniaxial anisotropy with easy axis in the film plane.    In very idealized 

form,   these experiments have been performed in the following manner (see the above references 
for details,   especially Refs. 5 and 9).    A fast rise-time (£.10      sec) pulse field H    of a few oer- 

steds magnitude is applied in the film plane at an obtuse angle to the mean magnetization m    of 
t ° an initially single-domain film.     The switching time t    and other information on the reversal 

fMany of the early experiments were performed with Ho antiparallel to m0, resulting often in bi-directional re- 
versal, with its own peculiar characteristics.    We shall exclude this limiting case from our treatment. 
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Fig. 1. Schematic illustration of a thin-film 
switching curve showing (1) low-speed region, 
(2) intermediate-speed region, and (3) high- 
speed region. Also shown are threshold fields 
for each region. 

PULSE  SWITCHING   FIELD   (H„) 

process is obtained from the voltage induced in a pickup loop with axis parallel to H   .    This 

voltage is termed the longitudinal switching signal;  further information may be obtained from 

the transverse switching signal,   induced in an orthogonal pickup loop with axis also in the film 

plane. 
The main results of these experiments are conveniently displayed in the form of switching 

curves,   in which inverse switching time is plotted as a function of the pulse field.    Figure 1 
shows a typical thin-film switching curve;  we note the presence of three distinct regions (first 

observed by Olson and Pohm ).    The reversal process in region 1 (low speed:   t    ~ 10     sec) 
has been identified as the nucleation of reverse domains and subsequent domain-wall motion. 
The threshold field for this process,   H   ,,   is the wall coercive force;   a fairly successful model 

P1 n 
for domain-wall switching has been  proposed  by  Conger  and  Essig. We   shall not  discuss 

region 1 further since the physical processes involved are well understood. 
-8 

We proceed now to region 3 (high speed:   t    <  10      sec),    where  the   reversal  process  is 

clearly a coherent,   or nearly coherent,   rotation of  M.    A phenomenological theory of such a 
process,  based on a damped gyromagnetic equation such as that proposed by Landau and 

12 4 5 Lifshitz,      has been found by Smith,   and by Olson and Pohm,   to describe switching in region 3 

fairly well.    However,  there are two difficulties.    First,  and most disturbing,  the threshold 
field H  , is always found to be greater (by a factor ~1.5) than the theoretical Stoner-Wohlfarth 

threshold H     for a uniformly magnetized uniaxial film.    Second,   the damping of high-speed pt 
reversal is found to be 3 or 4 times the intrinsic damping,   as obtained from low-power ferro- 

10 14 15 10 14 magnetic resonance linewidth     '     '       or decay of free oscillations of the magnetization.    ' 
15 Smith and Harte      have suggested that the discrepancy in the threshold field may be caused 

by dispersion in the direction and amplitude of the uniaxial anisotropy.    '        By assuming that 

those regions of a film with the highest threshold control coherent rotation,   they have been able 

to account for observed thresholds with fairly plausible values of anisotropy dispersion.   However, 
their assumption is difficult to justify,   since the effective anisotropy in coherent rotation of  M 

should be the mean,   or close to it.    Furthermore,   interactions between regions were neglected. 

The discrepancy in damping,  for which no explanation exists,  implies that there is a loss 
mechanism operative in (large-angle) switching that is not present in (small-angle) resonance. 

1 5 

tThe exact meaning of "switching time" varies somewhat from worker to worker and may depend upon the nature 
of the reversal process.   For present purposes, ts need not be precisely defined and may just be considered as 
some measure of the duration of the longitudinal switching signal. 



It should now be clear that even such a conceptually simple process as coherent domain rotation 

is only imperfectly understood. 

Region 2 (intermediate speed:    10      £ t    £  10     ) has baffled workers since its discovery  ' 

and the physical processes involved are not known.    The threshold field H   ,,  however,   has been 

found to coincide with the theoretical rotational threshold H   .. '      This,   in addition to the obser- 

vation of a sizable transverse switching signal,   implies that reversal takes place at least partially 

by a rotational mechanism.    However,   switching in region 2 is about twenty times slower than 

that predicted by the above-mentioned theory of coherent reversal.    Humphrey    has suggested 

that reversal starts by simple coherent rotation but quickly breaks up into what he has termed 
noncoherent rotation.    Although this picture is consistent with all experimental evidence,   in- 

cluding the shape of the longitudinal switching signal (an initial spike followed by a long tail   ), 

a physical model was lacking,  and it was not even clear what precipitated the breakup. 
Q 

Humphrey and Gyorgy    have obtained a phenomenological description of noncoherent roL.ion 
18 based on the Gilbert       modification of the Landau-Lifshitz equation with damping about 100 times 

19 the intrinsic damping, but no explanation of this extraordinarily large loss was given.   Harte     has 
proposed a model of noncoherent rotation based on angular anisotropy dispersion,   but magneto- 
static interactions were neglected and the remaining effects are far too small to account for the 

15 large loss.    Smith and Harte      have suggested that intermediate-speed switching may take place 
by a sequential process,   observed quasistatically by Smith,      which they termed labyrinth propa- 
gation.     (An incipient labyrinth may be seen in the photograph in Fig. 2 as a reverse domain which 

has propagated from the lower right film edge.)   Another possibility is a partial rotation process, 
21 observed quasistatically by Methfessel,   et al.       However,   no attempt was made in either case 

to calculate the dynamic characteristics of such processes,   and it is not known how valid these 

models are. 
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Fig. 2. Magnetization ripple in a thin film. Top center: defocused electron micrograph 
of a 250-A Permalloy film (courtesy of M.S. Cohen) showing longitudinal ripple (fine 
structure) and large-angle domain walls (heavy black oc white lines). Top left and right: 
schematic illustration of longitudinal and transverse ripple, respectively. Bottom: anisot- 
ropy model showing randomly varying and uniform uniaxial anisotropies. 



In summary, the unsolved problems in thin-film switching are:   (a) accounting for the ele- 

vated coherent rotational threshold;   (b) discovering the reason for breakup of coherent rotation in 

region 2;   (c) finding the origin of the anomalous damping in coherent rotation;  and (d) uncovering 

the physical mechanism of noncoherent rotation.    The theory we develop provides answers to (a) 

and (b),   provides a qualitative answer to (c) — further calculation should result in a quantitative 

comparison of theory and experiment on this point,  and leads to a suggestion for (d) which, although 

plausible,   cannot be fairly judged without additional development of the model. 

B.    THEORETICAL  FOUNDATION 

Our analysis of magnetization reversal is based on a semiclassical,   continuum theory in 

which the quantum mechanical spin-density operator of the ferromagnetic electrons is replaced 

by a constant times a classical vector field M(r, t) — the magnetic moment density or magnetiza- 

tion.    This replacement is possible provided the wavelengths of all significant disturbances of 

the spin system are much greater than the lattice constant and provided we are not too near the 

Curie temperature.    For a thorough discussion of the validity of this semiclassical theory,  the 
22 -» -» 

reader is referred to a paper by Herring and Kittel.       We assume that all fluctuations of M(r, t) 

from its spatial average m  (t) are small,   i.e.,  that the sample is nearly a single domain.    This 

condition we write as 

| 6M |  « M (I-la) 

where 

M(r, t) = m  (t) + SM(r, t) (I-lb) 

and 

M    =  |M|       . (I-lc) 

The fluctuations 6M will be assumed constant across the film thickness, i.e., with wave 

vectors k in the film plane. However, generalization to three-dimensional k-space is not 

difficult so that it may be possible to generalize the theory to include  reversal processes in 

bulk ferromagnets. 
12 

As suggested phenomenologically by Landau and Lifshitz,      and later established on a very 
22   * -~ general basis by Herring and Kittel,      the equation of motion for M may be written in the form 

^p = -yM x H ff + damping term (1-2) 

where y  is the absolute value of the gyromagnetic ratio and H  ff(r,t) is an effective magnetic 

field which,  for our purposes,  consists of an exchange field H  ,  a magnetostatic field H    ,  an 

effective anisotropy field H  ,   and an external field H, .    In addition,   H ,. includes the effects of VJ a' h eff 
magnetostriction and finite conductivity.    In the theory we shall develop,   damping processes are 

of secondary importance;   therefore the form of the damping term in (1-2) is not crucial to our 

work.    In Sec. IV we shall briefly discuss the various damping terms which have been proposed, 

but for most of this work damping will be neglected. 

The constant y  is given by 

y=-5^ d-3) 



where  e  and  m  are the electronic charge and mass,    c   is the velocity of light,   and the spectro- 

scopic splitting factor  g  is slightly greater than  2  due to incomplete quenching of orbital angular 

momentum. 

The exchange field H  ,  which arises from the short-range interactions responsible for 
e 22 

ferromagnetism,   has been shown by Herring and Kittel      to be given,   for a cubic lattice,   by 

-• ? A       ? — 
H    = -±^-   V^M (1-4) 

e      M2 

o 

where  A   is an exchange constant (in erg/cm).    It should be noted that H   ,   as given by (1-4),   is 

independent of atomic model and follows from the energy expression of lowest order in the spatial 

derivatives of IVI   allowed by the symmetry of the lattice,   and invariant with respect to spin ro- 

tations and inversions. 

The magnetostatic field H     has its origin in dipole-dipole interactions and in our continuum 

theory may be found from Maxwell's magnetostatic equations 

V •   (ft     + 4TTM)  = 0 (I-5a) m 

VX H      =0 (I-5b) 
m 

We devote Sec. II to the solution of (I-5a,b) with boundary conditions appropriate to thin-film 

geometry. 

Anisotropy forces in thin polycrystalline films are of two general types,   uniform and local. 

A uniform uniaxial anisotropy is usually found to be induced along the magnetization direction 

during film deposition.     Although the physical origins of this anisotropy are not completely under- 

stood (for a discussion of these the reader is referred to a paper by Smith    ),   a satisfactory 

phenomenological description may be obtained from the energy expression 

E    = -K   M "2(M  •  T )2 (1-6) a o    o x 

where   i    is a unit vector along the easy axis and K    is a positive constant.    Local anisotropy 

forces arise from inhomogeneities and will be discussed in the introduction to Sec. III.    Magneto- 

strictive effects,  whether uniform or local,  will be included in the effective anisotropy field. 

External fields may be steady or time-varying and entail no conceptual problems.    Rise 

times of the order of 10        sec for a pulse field of a few oersteds are now readily available, 

and we shall assume that pulse switching fields may be represented by step functions. 
24 

The primary effect of finite conductivity in metallic films is eddy-current damping.   Smith 

has shown that the mean eddy-current contribution to the effective damping a [see (IV-3) ] is given 

by 

A      T   2 

4TTL   CO 
a     -  5  (1-7) e 3p 

where   L  is  the  half-thickness  of the  film,   p   is  the   resistivity,    and co      = 4TTM  y.      For  a 4 m o - 
Permalloy film with p =2X10   abohm cm,   a     is equal to the intrinsic damping of about 10 

,-5 e 
for L = 1.6 X 10      cm.    Thus,   unless the film thickness is greater than about   2500A,   eddy cur- 

rents may be neglected.    Where necessary,    a   will be assumed to include a   ,   but we shall not 

be concerned explicitly with this effect in the theory to follow. 



We remark here that we shall find it useful to introduce the concept of a "typical Permalloy 

film" (TPF),   the properties of which are listed in Appendix A.    This we do mainly for the purpose 

of numerical estimates of our results,  but a few of the approximations we use would have to be 
altered in order to apply our theory to a film with parameters drastically different from a TPF. 



II.    MAGNETOSTATIC  FIELD OF A NONUNIFORMLY 

MAGNETIZED THIN  FILM 

A fundamental source of difficulty in any magnetic problem involving fluctuations of the 

magnetization M(r) on a scale comparable to a sample dimension is the magnetostatic (dipole- 

dipole) interaction.    This long range force leads to a field H(r) which depends not only on 

M(r) but also on M throughout the sample.'     In conjunction with other forces such as exchange 

and anisotropy,   it usually renders static calculations very difficult (only a few exactly soluble 
24 cases are known     ) and dynamic calculations intractable.    Thin-film geometry,   however, 

greatly simplifies the magnetostatic problem,   enabling us to find an approximate solution for 

H(r) in a form which is very convenient for both static and dynamic situations. 

We  calculate  this  field  (also  called the   stray,    dipolar,    or  demagnetizing  field)  from 

Maxwell's magnetostatic equations,   for a planar film of thickness 2L with an arbitrary magnet- 

ization distribution M(r).    A rectangular coordinate system is used with film boundaries given 

by x = ±L  ,  y = ±L  ,   and z = ±L (z-axis normal to film plane).    We eventually go to the limit 
_i x '        y 

L       L      - »,   so that edge effects may be ignored,   i.e.,   the field from poles on the film rim is 
x>y -.    -. 

neglected.    For convenience in this section,   we introduce a normalized position vector a - r/L = 

U,T),£),    and use the notations V s (9/3^, 9/9TJ, 3/9f) and Via) = df/dt.    Maxwell's magnetostatic 

equations are given by (I-5a, b): 

V • B(a) = 0 (Il-la) 

VX H((T) = 0 (Il-lb) 

where 

B = H + 4TTM       . (II-lc) 

From (Il-la) and (Il-lb) we have the boundary conditions 

B •   i    continuous at f = ±1 (II-2a) 
z 

H x 7    continuous at f = ±1 (II-2b) 
z 

where  i    is a unit vector in the z-direction.    Also,  we require 
z 

lim    H(CT) = 0 (H-3) 
Irh- 

We write M in the form 

K 

K 

= 0 • \t\  > 1 <n-4) 

t In this section we omit the subscript on H    for brevity. 



where 

-»     -» /n n 
K  = k L = TTL   -r^-   ,   JL ,   0 )   (n  , n    = 0, ±1   ±2, . . .) 

\Lx    L
y    /   

x y 

From (Il-lb),   H = - v#,   so that the potential $(a) satisfies 

V
2

0(CT) = 4TTV •   M = 4TT   YI   M    '   ml(S) + iK   •   m_(£)] e1K' a      -1 < f < 1 

(II-5) 

= 0 |j.|  >! 

The problem now consists of solving (II-6) with the boundary conditions 

(47T i    •   M - 4>') 

3rt 
6KF 

8^ 

continuous 
? = ±1 

continuous 
f=±l 

and 

lim     4> - const. 
Si — 

We adopt a description of the potential  <p   of the form (II-4): 

<pG) = YJ <t>js) eiK'ff    -i<t<i 

(II-6) 

(II-7a) 

(II-7b) 

(II-7C) 

± ,. ,     IK • a        . + 
=  Z  <*•*(£> el" *'  for £ > 1 

K 0     for f < — 1 

Then from (II-6) and (II-8) 

(II-8) 

-K   0_(£) + <^(£) = 4;rp_(£) 
K K K 

-K
2

0*(E) + 0*"(t) = 0 

where K =  | K |  and 

pjf) = T   •   m^(£) + iK •   mj£) 
K K K 

(the volume pole density).    The transformed boundary conditions are 

4TTTZ •   m_J±l) - </>^(±l) = -0*'(±D 
K K K 

0_(±1)   =   0^(±1) 

(II-9a) 

(II-9b) 

(11-10) 

(Il-lla) 

(II-llb) 

lim    $___ (£) = const. 
J-±oo K' 

(II-llc) 



For K  - 0,   the solutions are easily found to be 

(b    = 4ir i    •   \      m  (v) dv 

(?) d? 

0 

0     = 4TT i 
^o z Jo      ° 

•1 

<p "= 4;r7    •   \        m  (?) d? 
o z     JQ ov 

to within an arbitrary additive constant.    For K =£ 0,   the solution to (II-9a) is 

K K 

4TT rf 
0_ = A_ eK? + B^ e"Kt + —   \      p_Ji/) sinh[*(? - i>)| dv 

>0       K 

and from (II-9b) and (II-llc) 

0_ = C_^ e 

(II-12b) 

(II-12b) 

(II-12c) 

(II-13a) 

(II-13b) 

Using the boundary conditions (II-lla) and (II-1 lb),   the constants A_^,   B^,   and C_^ are found to be 
K K K 

i 27T   I ...     -K£   ,„   ,    ZTT     -K: 
\    = \     p     ?) e     '   d? +  —  e     I        ml) 
r K   Jn '0 K 

.0 
it)   eK-'  d? - —  e~*F   •   m   (-1) 

K Z ""* 

C*---S!  C1   P   (?)e±K£d?+^T   • f 
K "     J-l        * K       Z        I 

m   (1) e*" - m   (-1) eT* 

so that 

.(f) 
2TT 

J-l        K 
) e     ' ' di> - I l        m^fi;) e     ' 

V--\ 

and 

*<s> = -4? p_^(i>) e dv — I l    •   m_^(v) e 
1       K y = -l 

TK£ 

(II-14a) 

(II-14b) 

A general answer to the question "Given the magnetization distribution in a thin film,   what is 

the magnetostatic field?"   is provided by (II-14a, b),   since 

H =   £ hjf) eiKff = -v* (II-15a) 

with 

h_J?) = -iM>_(£) - i4^(f) (II-15b) 



inside the film,   and the analogous expression outside the film.    However,   in the cases we shall 

be dealing with,   M(<j) is not given but must be determined statically (by either minimizing the 

total energy or requiring that the torque T   -, = M X H  ff vanish everywhere) or dynamically 

(from the equation of motion (I-Z) for M,   namely 3M/9t = -yT  ff).     Using the potential (II-14a) 

will then lead to an integro-differential equation for m_^(J) which might be solved by approximate 
K 

methods.    However,   a much simpler procedure — one which is readily applicable to a large class 

of problems and through which considerable physical insight can be obtained — is to assume that 

m_^ is independent of  £.    This assumption,   which we call the thin-film approximation (TFA),   is 
K 

good providing the Fourier components m_^(£) are slowly varying across the film thickness.    It 
K 

will be shown later that for thin enough films,   components for which the TFA is not appropriate 

have very high exchange energies and are,   therefore,   only weakly excited. 

Using the TFA in (II-14a, b),   we find 

M) = 4;: 
12. (l 
K 

e      coshnf) +   i    e      sinh*?: 
z 

(II-16a) 

*    (K) = —   e sinh K (-4*-,) (II-16b) 

The Fourier components of the magnetostatic field are then found from (II-12a-c),   (II-15a, b), 

and (II-16a, b) to be 

-47T i i 
z z 

(II-17a) 

and 

hjt) 
K 

(K^O) 

-47T   -     -    (1 cosh KK) + i i    e z 
sinh K£ 

+   i    e 
z 

-K I.     K 
sinh K£ +   i    c 

z 
osh Kt\ (II-17b) 

inside the film,   and 

h± = 0 
o 

(II-17c) 

h   (f) = -4TT e 
T«£ sinh K|«yK 7.) zl K z)l 

(II-17d) 

above and below the film.    Note that (II-17a) and (II-17c) are also valid exactly,   i.e.,   for 

m    = m  (£). 
o o 

The field inside the film is of primary interest,   since only this field contributes to the 

torque on M.    The TFA magnetostatic torque may be expanded in a Fourier series 

T(a) = M(i, 7)) X H(a) =   £ ?_(£)  e1*' ° (II-18a) 
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where the components of  T  are given by 

V tQ(f) = mQ X hQ +     I     m_XhJt) (II-18b) 
-K K 

rjt)  = in   x h_j£) + m^ x h   +        £       m^_xh^(?)      . (II-18c) 

~K'^, 0 

In keeping with the TFA,   it is the f-average of the torque components which is of physical 

interest.    Since the h^U) are the only ^-dependent factors,   we may replace h   (f) by 

« L    J-l K 
h^ =  j \      h_(£) d£       . (11-19) 

Then from (II-17b) we have our final result for the magnetostatic field components 

£_ = -4TT   -^   x(«) +  V^xW    •   m_» (II-20a) 

where 

X(K)   = K"
1
 e~" sinh* (II-20b) 

XM = 1 - x(«)       • (II-20c) 

Note that since x(0) = 1 and x(0) = 0,   (II-20a) holds for K   = 0 also. 

We next examine h_^ in the limits K » 1 (wavelength small compared with film thickness) 
K 

and K « 1 (wavelength long compared with film thickness).     For the first limit, 

X(x) = 27 + • •• (ll-21a) 

so that 

and 

X(«) = !-•£+••• (II-21b) 

•4TTI-^  + -|^l •   m_        (K » 1)       . (II-21c) 

The first term of (II-21c) is the usual infinite medium magnetostatic field from volume poles and 

follows immediately from (II-la-c) with periodic boundary conditions.    The second term is a 

small correction due to the fact that surface poles do not quite cancel themselves out for a film 

of finite thickness. 

For the second limit, 

XU) = 1 - K + | K
Z
 + . . . (II-22a) 

X(K) = K - | K
Z
 + . . . (II-22b) 
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so that 

AESL + T 7 ) 
\    K Z     Z/ 

The first term of (II-22c),   written with non-normalized wave vector k = K/L,   is 

h -4TT(-!5-5- +   i   i   I  •   m (K « 1) z   z) 

A   r    kk -47rL  -;— •   m 
K T 

(II-22c) 

(II-23) 

This is just the planar magnetostatic field in the long wavelength  limit,    calculated  by   some 
7 ft 

authors.       It is the infinite medium magnetostatic field from volume poles attenuated by a 

factor kL « 1;  the reason for this attenuation is simply the absence of volume poles from the 

regions above and below the film.    The second term in (II-22c) is the normal demagnatizing 

field from surface poles. 

To summarize,   the magnetostatic field components are given in the TFA by 

h    = o 
— 4TT i   i    •   m 

z   z         o 

h_ = 
k 

-47r[^£   x(kL) +"izTzx(kL)j •   m 
k 

(II-24a) 

(II-24b) 

where 

H(r) h    + o E     ^e 
k 

kV=0 

ik (II-24c) 

and x   and  x   are given by (II-20b) and (II-20c).    Equation (II-24a) is the uniform demagnetizing 

field of an oblate spheriod in the zero thickness limit.    The first term in (II-24b) is from 

volume poles,   with an attenuation factor  x  due to the presence of finite boundaries.    The second 

term in (II-24b) is from the surface poles,  with an attenuation factor  x  due to finite wavelength 

and therefore some cancellation of these poles.    We now have the thin-film magnetostatic 

field in a simple form which may be used to calculate the static magnetization configuration 

(Sec. Ill) and interactions in large-angle magnetization rotations (Sec. V),   and as a by-product 

we can also obtain the planar mode spectrum (including exchange fields) for all wavelengths 

(Sec. V). 
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III.    STATIC EQUILIBRIUM:   MAGNETIZATION RIPPLE 

A.    INTRODUCTION:   EXPERIMENTAL BACKGROUND 

To find the transient response to an external field of the magnetization M(r, t) of a ferromagnet, 

the initial state M(r, 0) must be known, which in our formulation means specifying the initial val- 

ues of the Fourier components m   (t) for all  k.    The most important sources of disturbances 
k 

m   (0) (k   =fi 0) are thermal agitation and inhomogeneities.    Thermally excited spin waves,   which 
k 

are present in any ferromagnet at a finite temperature,   and which result in the well-known de- 

crease of saturation magnetization M    with increasing temperature,   will be important dynami- 
cally if they become unstable.    However,   it will be shown in Sec. V that while such instabilities 

27 do occur,      their growth times are always longer than the time for coherent switching,   so that 

they have no significant first order effects. 

Inhomogeneities are present to some extent in any ferromagnetic crystal.    However,   in a 
polycrystalline sample,   in which we are interested in this work,   particularly large dispersive 
effects are to be expected,   both from crystalline anisotropy forces and from strains between 
crystallites.    In this section we calculate the equilibrium dispersion-induced components m   (0) 

k 
[henceforth the argument (0) will be dropped]   for a polycrystalline thin film (<2000A),   repre- 

sented by a two-dimensional model.    (The model,   however,   is readily capable of extension to 

three dimensions to treat bulk polycrystals and thick films.) 

The solutions we will find are not only of importance in specifying initial values in the 
dynamic problem,   but are also of interest in their own right.    Before proceeding with the model, 

it will be useful to review the pertinent experimental evidence concerning the equilibrium mag- 
28 

netization configuration in thin films.    In 1960 Fuller and Hale,      using a defocused electron 
microscope,   observed the Lorentz deflection of electrons by the magnetic induction field 

B =! 47rM(r ),   and discovered a wave-like magnetic fine structure which they called magnetiza- 
29 30 tion ripple.    This discovery has been confirmed by subsequent investigators,    '       and an ex- 

ample is shown in Fig. 2. 
Fuller and Hale described two basic ripple components:    longitudinal (LMR),   in which 

M = M(x) (k   ||  r ),   and lateral or transverse (TMR),   in which M = M(y) (k   ||  i   ),   where the 
x    _» y 

mean magnetization m    lies along the x-axis of a Cartesian coordinate system with the z-axis 
normal to the film plane.    These two ripple components are shown schematically in Fig. 2.    Since 

the volume pole density is very small for LMR (V •   M =» 0) but not for TMR (V •   M ^ 0),   and 
since the two are equivalent with respect to exchange,   anisotropy,   and Zeeman forces,   the main 
contribution to the magnetization ripple should be LMR.    Fuller and Hale thus interpreted the 

fine-structure lines they observed as the loci of constant M,   orthogonal to m   .    They found a 
-4 -2 ° mean wavelength of ~2 X 10      cm and a mean amplitude of ~10       radian. 

29 Fuchs      has suggested that the origin of ripple is to be found in crystalline anisotropy 
forces,    which  vary  randomly  in  direction  from   crystallite  to  crystallite  (crystallite  size 
a<10      cm;   crystalline anisotropy energy =d0   erg/cm   ).    The magnetization does not follow these 

local wanderings of the direction of minimum anisotropy energy but, because of exchange coupling, 
which tends to straighten the path of M,   follows the mean easy axis averaged over a number  of 

crystallites.    For TMR,  this number is greatly increased by magnetostatic coupling,   so that the 

amplitude of TMR is much less than that of LMR.    The mean magnetization direction is deter- 
mined by the uniaxial M-induced anisotropy and the external field. 
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In addition to crystalline anisotropy,   there will also be,   as just mentioned,   random local 

magnetostrictive forces due to inhomogeneous strains between crystallites (or clumps of crys- 

tallites).    Stresses (for example,   surface tension) between adjacent crystallites on the substrate 

to which the film is bonded result in planar strains;  z-directed stresses,  on the other hand,   may 

be for the most part relieved,   since the free upper surface of the film imposes no comparable 

constraint.    Thus we expect the local magnetostrictive anisotropy axes to lie nearly in the film 

plane and to be randomly oriented in this plane.    Experimental evidence for such an anisotropy 
31 is provided by oblique-incidence Permalloy films,      which are deposited by a vapor beam at a 

fixed angle 0. to the substrate normal.    (In normal films 6.  = 0.)   In such films,   crystallites 

form chains perpendicular to the incident beam by means of a self-shadowing mechanism,   so 

that strain axes are not random but tend to lie along these chains.    As a result of both aniso- 

tropic strain and shape anisotropy of the chains,  these films possess a large over-all uniaxial 

anisotropy K    =10   erg/cm  ,   depending on 9. and film composition.    Shape effects may be sepa- 

rated from strain effects by considering the compositional dependence of K ;   from this,   one 
4       u.      3 

may  estimate  random  anisotropy  energy   in  normal  films  of ~5 X 10   erg/cm    for a TPF. 

The relative roles played by crystalline and strain anisotropies in inducing magnetization 

ripple have not been firmly established experimentally.    In what follows we shall neglect crys- 
talline anisotropy since strain effects are probably greater and strain anisotropy is easier to 

handle analytically.    However,   consideration of crystalline anisotropy would not alter the results 
in any significant qualitative way.    We assume a random local magnetostrictive anisotropy which 

is planar,   uniaxial,   and constant across the film thickness and,   using a simple model for a poly- 
crystalline film,   proceed to calculate the ripple spectrum in static equilibrium. 

B.    RANDOM ANISOTROPY MODEL 

Our model for a film is a planar array of N right cylindrical cells of height 2L (= film 

thickness) and cross-sectional areas a    (m = 1,2,... N).    The a     are assumed to be random m m 
variables with ensemble average a, and the cross-sectional shapes are also assumed to vary 
randomly. By this we mean precisely that the intersections of any line in the film plane with 
the  cell boundaries  occur  at  random  (uncorrelated)  intervals  along the   line  (see  Fig. 3). 

Fig. 3.    Random cell model showing 
construction used to find autocorre- 
lation function c  Cf). 

o 
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Furthermore, the mean number of such intervals per unit length,  r     ,   is assumed to be the same 

for all lines in the plane; i.e., cell shapes are on the average isotropic and cell sizes and shapes 

are on the average homogeneous.    The film plane is of area S = Na,   and we shall eventually pass 

to the limit N — °° (a fixed). 

Each cell has a magnetic anisotropy which is the sum of two terms:    a uniaxial M-induced 

anisotropy,   common to all cells,   with energy density K    and easy axis the x-axis,   and a uniaxial 

strain-induced anisotropy with energy density K.      and axis in the film plane at an angle cv      to 

the x-axis,   where a      may take on any value between —TT/2. and TT/2 with equal probability.    We 

further assume zero correlation among the quantities a    ,   K. and a     ,   and that the variations 6 ^ m'      lm' m' 
in K.      and a      are uncorrelated from one cell to the next.    This addition of uniform and random lm m , ? 

uniaxial anisotropies has been used before to explain some film properties,      but a model was 

lacking and exchange and magnetostatic interactions were neglected;   in the present work inter- 
33 

actions play a vital role.   Rother      has analyzed a model similar to ours; however, in his model, 

K    =0 and the cells have equal square cross sections.    He has included the effects of exchange 

interactions,   and magnetostatic interactions as a perturbation,   but his results are quite different 

from ours for reasons which will be made clear at the end of this section. 

The anisotropy energy density at any point in the film is given by an obvious generalization 

of (1-6) 

E  (r)=-M"2{K    [M(r) •   T   ]2 + K,(r) [M(r) •   a(r)]2} (III-l) 
a o o ' x 1        ' 

where a(r ) is a unit vector at angle  a   to the x-axis;   for  r   in the m      cell,   K.(r ) = K.      and 

a(r ) = a     .    The anisotropy field is then 
m KJ 

H    = -v    E    = 2M"2 [K (T    - Ml    •   MM "2) T    •   M + KAa - Ma  •   MM ~2) a  •   Ml 
a JTJ   ao'oxxox 1 o ' 

so that the anisotropy torque is given by 

f    = M X H    = 2M "2M X (K T  T    + K.aa ) •   M       . (III-2) 
a a o o   x   x 1 

Since we shall be interested only in the case of external fields in the film plane,   M  must lie in 

this plane in static equilibrium t and is,   therefore,   determined by the angle <p(r ) between  M   and 

the x-axis.    Equation (III-2) then becomes 

f    =7    [-K    sin2^> + K,  sin2(a - <p)]       . (III-2-1) 
a        z '      o r 1 T ' 

We next separate the spatially varying part of <p,   writing 

<p(r) = <pQ + 6<p(r) (III-3a) 

where 

<pQ =<<?(?•)>£ | C <p{r) d2r (III-3b) 

and from (I-la) 

16<p |  « 1       . (III-3c) 

t This may not be true if there is a strong easy axis normal to the film plane; but in that case, deviations of M 
from its mean direction are large,     and thus beyond the scope of this linearized treatment. 
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2 
Inserting (III-3a) in (III-2-1) and dropping terms of order (6<p)    and higher,   we find 

f    =T    (-K    sin2<p    + P(r)-26(p(r) [K    cos 2^    + Q(r )]} (III-4) a        z o o vo To ' 

where 

P(r ) = K^r ) sin2 \a{r) - <p   ] (III-5a) 

Q(r ) = K (r) cos 2 \a[r) - <P   ]       . (III-5b) 

The functions P and Q contain all effects of the random anisotropy field. P may be thought of 

as a random perturbing force on 6<p, and Q as a random restoring force. The ensemble aver- 

ages of these functions vanish,   since 

= K.  sin 2(a — w   ) 1 o 

= K,  sin 2{a — <p   )      (since K.      and a      are uncorrelated) 1 ^o lm m 

1   p T/2 
= K.   — \ sin 2(o — w   ) da  = 0 

1   * J-,/2 

and similarly for Q. 

We now expand 6cp,   P,   and Q in Fourier series 

6<p(r ) =     YJ    <P     eik'r (III-6a) 
k^O     k 

P(?) =  2 P    eik'r (III-6b) 

k    k 

Q(r) = YJ  q_ elk'r (III-6c) 

k     k 

where the wave vector  k   takes on values imposed by periodic boundary conditions at the film 

edge x = ±L ,   y = ±L : & x    J y 

ln        n \ 
k   = A^,  JL, 0)    (n,n    =0, ±1, ...) (III-7) 

\L        L        / x'    y \ X y / J 

with the condition 

ki « 1 

(I  = lattice constant) insuring the validity of our continuum treatment of the magnetization.    The 

components of (III-4) then become 

(t"0)a = ~L(-K„ Sin2<p, i   I —K    sin2<p    + p    — 2      ),     q      w      | 
zl       o vo      Fo ^     H  k'    k'/ 

(P^ " 2K    cos 2(f)   B)^ - 2      ]]     <U  ^<P^ ) 
, k °  k j*/0    k-k'   k'/ 

U.J    =  iz(p_-2Ko coBZ<p<p^-2     2,    1 <^ )     • (III-8b) 
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These expressions will be combined with the remaining torques acting on  M (exchange,   mag- 

netostatic,   and Zeeman),  to determine the ripple components <p    .    In particular,   we will be 

interested in the "power"  spectrum  | <p    |   ,   and to find this ensemble average will require the 

 2 ^ 
power spectrum  |f_J     of a random function  F  of the form 

k 

F(r ) = F for      r  in mth cell (III-9a) 

F(r ) = 0 (III-9b) 

where   F may be  P or Q,   and 

F(r ) =   Y, f    elk-r       (k  in film plane)      . (III-9c) 

k     * 

To accomplish this we first find the autocorrelation function 

-       1  C —=:—- ~   2- 
CQ(r)=-|\   F(r'+ r ) F(r') d  r' (111-10) 

35 by a generalization of a method due to Kenrick.        Consider a straight line in the film plane de- 

fined by the vector  r,   with origin at an arbitrary point  r' (see Fig. 3).    We first determine the 

probability P  (r, r') that no cell boundary intersects this line between r'   and r' + r .    From 

homogeneity and isotropy,   respectively,   P  (r, r') = P  (r ) = P  (r).    Now the probability that 

there are no cell boundaries between  0  and r + Ar is equal to the probability that there are none 

between 0  and r,   multiplied by the probability that there are none in the interval Ar.    This 

latter probability,   in tl 

along any line).    Thus 

-1 -1 
latter probability,   in the limit Ar — 0,   is 1 — r     Ar (where r       is the density of cell boundaries 

lim     P(r)(l-r_1Ar)=    lim     P  (r + Ar) 
A n        O O . „        O Ar—0 Ar—0 

= P  (r) + ArP' (r) + . . o o 

Po(r)=-ro~lpo(r) 

which has the solution 

-r/r 
(r) = e 

o P (r) = e ° (III-ll) 

[since P (0) = 1]. 

Since F(r ) is a random function with zero mean,   the integrand of (III-10) vanishes unless 

r' + r  and  r1 are in the same cell,   in which case it is equal to F  .    Thus we have the result 

—5    -r/r 
c  (r) = cQ(r) = F    e °       . (111-12) 

This expression is somewhat in error for two reasons. First, it ignores the effects of finite 

boundaries, which would result in a correction of order N and may therefore be neglected. 

Second,   it does not consider the possibility that because of a concave cell boundary,   both   r 
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and  r'   may lie in the same cell although the straight line  connecting them passes through one 

or more other cells (as in cell m.,   Fig. 3).    However,  unless the cells are serpentine,   which 

is not at all plausible physically since crystallites grow outward in all directions from a nucleus, 

contributions from such double crossings (and triple,   etc.) should be very small and can safely 

be ignored. 

The power spectrum is just the   Fourier transform of the autocorrelation function: 

u , —.    -ik- r   ,2— 
S .)   Co(r)e d  r 

F_2 
S I    e rdrl     e-lkrcose de-JJ de - \ \    exp 

s 

/   Z x    2 
V x    + y 

- i(k  x + k y) 
x yJ dxdy (111-13) 

where   S   is the region  |x|  > L ,    |y|  > L  .    The first term in the bracket in (III-13) is 
x y 

,«o     -r/r , ?    ?    , i7 

e ° Jjkr) rdr = 27rr„(l + k  r^)"-37 

o < 0 o 

The second term vanishes as L ,   L    •* <o; 
x     y 

K exp 
f~2~~    2 
 ^— — i(k  x + k  y 

r x yJ dxdy 
ff 

exp 
/   2  ,     2 

\/ x    + y 
dxdy 

P»       -r/r p27r 
<  \        e rdr \ 

JL J
O 

de  = 2^-r  (L    + r   ) e 
os        o 

•L / s    o 

which goes to zero as L    — °°,   where L    is the smaller of L    and L  .    Thus we have the main & s s x y 
result of this section 

U   I2      F2   ->      zt, x i 2   2.-3/2 
lfJ     =  -R-  27rr^(1 +k  r^» (111-14) 

It may be helpful to know the mean cell boundary spacing r in terms of the cell areas a ; 

this is most easily found by direct evaluation of |f | and comparison with (111-14). The k = 0 

component of F is 

Vll F(r ) d  r 

so that 

N 

-i    I     F a 
m  m 

m = l 
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N       N 

I f   12 = A     T,      )",    F    F a    a o „2     i-i       u       m   n  in  n 
m = l   n=l 

~Z     N     — 
F^     v        2 

m = l 

(since F    F    = F  6        ) m   n m,n 

^a! 
S    - a 

(since N = S/a) 

giving 

27ray (111-15) 

Finally,   from (III-5a, b). 

P2 = K,2 sin2 2 [a(r) - a>   ] 1 l o 
1 K2  -O2 

2 Kl   " Q (111-16) 

C.    MAGNETIZATION RIPPLE  SPECTRUM 

The remaining contributions to the torque are now collected.    We consider the case of a 

steady,   uniform,   external magnetic field H in the film plane at an angle  /3 to the x-axis (see 

Fig. 4).    The Zeeman torque,   in the linear approximation,   is then 

T,   = M X H n 

T  M  H [sin(/3 - <p   ) — 6cp cos(/3 -</>)] (III-17a) 

with Fourier components 

( t    ).   =   i   M  H sin(/3 - ip   ) oh z    o o 

(t    ),   = - i   M  H cos (B - <p   ) q> 
kh z    ° °      k 

(III-17b) 

(III-17c) 

Fig. 4.    Coordinate system for static case. 

3-24-5511 

(normal to film plane) 
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The exchange field is given by (1-4) 

H    = ~ V   M(r ) =* ^f- (-i     sin<p    +1    cos<p   ) V   6ip (III-18a) e      M2 MQ x        ^o y ^o 
o 

where A  is the exchange constant.    This field exerts an exchange torque 

f    =MXH    =7   ZAVZ6a> (III-18b) e e        z ^ 

with Fourier components 

(T   )    = 0 (III-18c) 

CJL-1 [   2Ak2cc . (III-18d) 
Z T r* 

e k 

Finally we have the magnetostatic field with Fourier components in the TFA given by 

(II-24a, b),   which become 

(ho)m = 0 (III-19a) 

kk •  m 

k 'm k 

IV IV ill 

(h    )     =-47rx(kL) j-^ (III-19b) 

where 

~ -1     -K 2     2 
X (K ) = 1 — K       e       sinh K = K — ^  K    + . . .        . (Ill-20) 

The linearized torque components are then 

(?0)m = 0 (III-21a) 

(T_J     = -Tz47rMo
2x(kL) sin2(* - cp   )cp^ (III-21b) 

^   k 'm k 

where   k   lies in the film plane at an angle  *   to the x-axis (see Fig. 4). 

The equilibrium value of 6<p is determined by the condition that the effective torque vanishes, 

or 

r* V   k'e 

Teff(r)     Ta+fh + Te + fm=   2i(Vj       eik-   =0       . (111-22) 
en 

The   Fourier components of  (111-22)  vanish independently,    so that  from (III-8a),   (III-17b), 

(III-18c),   and (III-21a) 

-K    sin2cp    + p    - 2      V     q     <p     + MHsin(/3-(?   ) = 0       . (III-23a) 
O 0*0 LJ I*    T* O O 

k^O     "k    k 

For k   ^ 0,   from (III-8b),   (III-17c),   (III-18d),   and (III-21b) 
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-2K    cos Ztp   tp     +p-2      YJ     q tp      -[MH cos(/3 - <p   ) + 2Ak2 

° °   k'       k g; /Q     k-k'    k' ° ° 

+ 4TTM 
2

X   sin2(* - tp   )}  tp^ = 0       . (III-23b) 
k 

We solve (III-23a, b) by an iterative procedure,   first assuming tp ^ = 0 for all k ^ 0 and solving 

for tp   .    Equation (III-23a) becomes 
o 

1 1   Po 
=rsin2u>    — h sin (fl — tp   )=,  TT- (III-24) 
c o o        c.  is. 

o 

where the reduced field  h   is given by 

HM 
h =   lib =  -2K2 • <ln"25> 

K o 

The term p    is the magnitude of the (spatial) average torque on  M   due to random anisotropy 

forces,   and is only nonzero because for any given ensemble of values of a     ,   a    ,   and K, J J 6 m'     m lm 
there is a small but finite probability that this average does not vanish.    Of course the ensemble 

average p    =0. 

The mean square value of the right side of (111-24),   obtained with the help of (III-14) and 

(111-16) is 

(111-26) 

where   T   is the ratio of the rms value of the random anisotropy energy to the uniform anisotropy 

energy,   or 

2 1 r   = —^      . (in-27) 
o 

Since from (III-26) the right side of (III-24) vanishes in the limit S -* •*>,   we may neglect it in a 

first approximation to tp   ,   obtaining 

j  sinZtp    -h sin(/3 - <p   ) = 0 (111-28) 

13 
which is the well-known equilibrium equation for the magnetization direction of a uniaxial film. 

We shall be interested only in three special cases of this equation,   for which solutions are 

<pQ = 0 (p = 0, h >-l) (III-29a) 

tp    = TT/2 (p = jr/2, h > 1) (III-29b) 

tp     = arc sinh        (p = TT/2,   |h|  < 1)       . (III-29c) 

It is easy to see,   by examining the average uniaxial anisotropy and Zeeman energies 

ipj2 r2  2*ro
2 

4K2 

o 
8         S 
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E    =K    sin2</>    -MHcos(/3-cp   )       , (111-30) 
OOOOQ 

that the solutions (III-29a-c) minimize E  ,   and are therefore stable. 

The next step in the iteration procedure is to assume that there is but one nonvanishing 

<p    (k  ^ 0),   and using the value we have just obtained for ip   ,   solve (III-23b) for ip    ,   with 
k ° k 

ip _^ (k1 ^ k, 0) set equal to zero.    This just means that to a first approximation the ripple com- 
k' 

ponents <p     are decoupled.      (Note that it is only through the random anisotropy components 
k 

q that <p     and c/>      are coupled.)   Equation (III-E3b) becomes 
k-k' k k' 

fqo Ak2       2^Mo2   ~ 2 1 1   Pk 
h^-   + cos 2<pQ + h cos(p - <pQ) + -j£—  + —^—   x   sin   (*-<P0)<P_=2K"~       • (HI-31) 
l    o o o '     k o 

1 -1 The term q  K"    in (111-31) may be safely neglected,   for the same reason that the term p  K 

was negligible in (111-24),   provided 

A(/3, h) = cos2V    + hcos(/3-<p   )^0 (111-32) 

with <p    determined by (111-28).    But  A   is proportional to d E  /dtp      [see (111-30)] so that for 

stable equilibrium 

A > 0 (111-33) 

and (111-32) is satisfied.    The set of values (p., h ) such that 

A(/3t, ht) = 0 (111-34) 

occurs at transitions from stable to unstable equilibrium and are thus threshold angles and fields 
-»    13 

for irreversible,   coherent rotation of m   .        We may expect serious difficulties in the theory 

near such thresholds. 

For A ^ 0,   (111-31) becomes 

*-     = \ *TA [1 +X
e

2k2 + XmL_1? sin2(* -^o'1"1 (111-35) 
k o 

(kVo) 

where we have defined an "exchange length" 

.1/2 

e (v) 
and a "magnetostatic length" 

2TTM
2

L 

Xm =  -KIT        • <m-37' o 

A(/3, h),   defined by (III-32),   is for cases (a),   (b),   and (c),   respectively,   of (111-29) 

A(0, h) = h + 1 (h>-l) (III-38a) 

A^f.hJ^h-l (h>l) (III-38b) 
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A^f.h) = 1 -h2       (|h| < 1) (III-38c) 

The mean square ripple amplitudes then follow from (III-14),   (III-16),   (111-27),   and (111-35): 

(111-39) 

where 

g     = \ZkZ + \    L_1x(kL) sin2(* - <p   )>0 &r*        e m        A ^o k 
(111-40) 

Equation (111-39), the ripple spectrum, is the main result of Part C.    In Appendix B we return to 

(III-23b), and carrying our iteration procedure one step further show that the first order coupling 

[meaning the <p       are the coupling-free values of (111-35)] introduces a negligible correction to 

 2 ?' 
\tp    I   .    This gives us some confidence in our method of solution and in the result [(111-39)], 

k 
which we shall use in Sec. V.    In Sec. III-D,   however,   we examine this result and show that it 

represents a magnetic fine structure with the characteristics of the observed ripple. 

D.    DISCUSSION OF RESULT 

First, it must be pointed out that even though the mean square Fourier components given 

by (111-39) are proportional to S and therefore vanish in the limit S -* °°, their density in the 

k-plane,   from (III-7),   is 

(2»r 
(111-41) 

Thus any observable effects of the ripple components are independent of film area  S,   provided 

such effects do not become too large for long wavelengths (of the order of L    or L  ).    An ex- 

ample of an observable effect is the mean square magnetization dispersion 

(111-42) 62 =<[^(r)-<po]2> = <[6^(r)]2> 

which we calculate in Sec. III-E.    From Parseval's theorem [or from (III-10) and (III-13)] 

kVo     k 
(111-43) 

and if the main contribution to this sum is from components with wavelength short compared to 

L    and L ,   we may replace it by an integral using the correspondence 

1 f, - -h   f  «k ' d'k 
(2TT)' 

(111-44) 

which follows from (111-41).    [f(k ) is just f    with k   considered a continuous variable. ]    We see 

2 ? 

then that 6    is independent of S,   which makes physical sense. 
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Next we consider the first factor of (111-39): 

2 * K2 IK2 

r2 2Ki 2 Ki 

8A [2K    cos2<p    + M  H cos(/3 - <p   )1 [ 3  E  /a^ 1      o ^o o ^      • o ' '        o^o 

(111-4=5) 

The numerator of (111-45) contains the perturbing effect of random anisotropy forces (the factor 

\ coming from the average over axis orientations  a ).    The denominator may be thought of as a 

uniform magnetic stiffness tending to align M  along  H  and along the uniform easy axis (x-axis). 

In strong fields (h » 1) the ripple amplitudes go to zero and the film may be considered satu- 

rated.    As the field is lowered and a coherent threshold h   is approached,   A -» 0,   the ripple am- 

plitudes grow very large,   the condition (III-3c) is violated,   and we have a threshold catastrophe. 

The static equilibrium problem becomes nonlinear in the Fourier components ip    ,   and further 
k 

progress is very difficult without some simplified ansatz for M(r ) such as the band model of 

Thomas      or the labyrinth model of Smith and Harte.        Such treatments are not within the scope 

of this work.    In the absence of the uniform stiffness,   and in the absence of the interaction term 

g    ,   the components <p     do not of course become infinite:    M(r ) just follows the   random 
k k 

anisotropy. 

A crystallite cutoff of the ripple spectrum results from the effects contained in the factor 

(1 + ro
2k2)~3//2 (111-46) 

of (111-39):   for wavelengths   27r/k shorter than the cutoff length 27rr  ,   ripple amplitudes are 

sharply diminished.    This occurs because components of the random anisotropy with wavelengths 

shorter than the mean crystallite size are very small. 

Interaction effects,   which are contained in the last factor of (111-39) 

(1 + g   )"2       , (111-47) 
k 

are of great importance in determining the characteristics of the magnetization ripple.    The 

term g    ,   defined by (111-40),   is the exchange plus magnetostatic interaction energy density for 
k 

unit    \(p    |    ,   normalized to the uniform magnetic stiffness.    The effect of these interactions is 
k 

to suppress all Fourier components </>     for which g     » 1,   and leave unaffected those for which 
k k 

g     « 1.    If we define a characteristic closed curve O  in the k -plane by the relation 
k 

g     = 1       for      k   on C (111-48) 
k 

ripple components with wave vectors on C are attenuated by a factor of  | due to interactions. 

Since g    monotonically increases with increasing k,  the interactions (roughly speaking) suppress 
k 

those components with wave vectors outside C while leaving unchanged those with wave vectors 

inside C . 

It is helpful to transform C to   C  in the reciprocal wave vector plane,   defined by 27rk/k  . 

Thus,   points on  C  are described by a vector in the k-direction whose length is the wavelength 

2ir/k.    Figure 5 shows the characteristic curve   C  for a TPF (unless otherwise noted,   a TPF is 
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Fig. 5.    Characteristic curve  C 
,        . r, r    .    . .. UNCOUPLED 

snowing   etrect   ot   interactions REGION 

on ripple components with wave 
vectors  k   (for a TPF). 

-5 -2 in zero external field),   for which X    = 2.5 X 10      cm and X      = 1.25 X 10      cm.    In accord with e m 
our rough interpretation given above,   all Fourier components of the ripple with wavelengths irr"- 

side   C  are suppressed by exchange and magnetostatic interactions,   while components with wave- 

lengths outside   C  are unattenuated.    It is easily seen that the shortest wavelength on  C   is for 

* = <p   ,   or wave vector in the direction of mean  M.   The wavelength of this LMR is 27rX   (= 1.6 X 
_4  ° e 

10     cm for a TPF"),   and it is apparent from the sharpness of C near the origin that this ripple 

is well oriented,   in accord with experimental observation. 

In Fig. 6 we show this region in greater detail,   where now we plot angle of wave vector to 

mean  M vs wavelength 27r/k on a logarithmic scale.    Equipartition of exchange and magneto- 

static energies occurs along the dashed line,   which satisfies the equation 

X2k2=X    L"1x(kL) sin2 (<J> - q>   ) e m        A Y o (111-49) 

We see from this that over almost the whole reciprocal wave vector plane inside   C  the inter- 

action is predominantly magnetostatic.    For wavelengths much greater than the film thickness, 

or 
kL« 1 (111-50) 

(111-48) becomes 

X2k2 + X    k sin2(* - <p   ) = 1 em o (111-51) 

The condition (111-50) is fairly well satisfied on  C  even for the shortest wavelength 27rX  ,   for 

which kL = L/x   (=0.2 for a TPF).    In the magnetostatic region we may neglect the first term 

in (III-51),   so that  C   is determined by 

(X    k)      = sin   (<f> — cp   ) (111-52) 

From this we find that the minimum wavelength of TMR (k   1 mean  M) is 27rX     (= 0.8 mm for a 
° m 

TPF). 
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27r/k(cm) 

Fig. 6.    Detail of Fig. 5 near origin showing exchange-coupled 
and magnetostatic-coupled regions (for a TPF). 

The characteristic curve of Fig. 5 may also be interpreted as the extent of the interactions. 

M   at the origin is strongly coupled to  M  everywhere inside  C,   where 27rk /k    has the meaning 

of a position vector. 

We have seen that short wavelength ripple components have well-oriented wave vectors in 

the direction of m    and include all wavelengths longer than about 2-n\  .    However,   electron 
° _4     e 

micrographs show a fairly well-defined wavelength of 1 to 2 X 10     cm (see Fig. 2);  one wonders 

why this pattern is not completely obscured by the longer-wavelength components.    The answer 

is that what are observed are spatial variations in the intensity of the electron deflection pattern 

caused by spatial variations in the Lorentz force.    The more rapid the variation in  M,   the 
28 

greater the electron contrast.    As shown by Fuller and Hale,      the magnitude of the change in 

intensity of the electron beam due to the k      component of LMR is proportional to     \k(p_^\ 

From (111-39), k 

kcp 
2 A 

r 
c 2        r     l— 'o   ,,   ,     2. 2.-3/4 ,,.   .  , 2, 2,-1 

T7  \i  (1 + r   k   ) k(l + X   k  )" (111-53) 

so that for 

kr    « 1 
o 

(111-54) 

we find 

\kcp_ 2  oc k(l +Xe
2k2)_1 (111-55) 

-1 
Ordinarily X    is much j    e From (111-55) we see that the intensity spectrum has a peak at k = X 

greater than the crystallite size,   and (111-54) is satisfied.    (For a TPF,   r /Xe = 0.05.)   The 

wavelength at the peak is 2TTX    (= 1.6 X 10"   cm for a TPF),   which corresponds quite closely to 

the actual wavelength observed. 
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With an external field applied along an easy or a hard axis of the uniform anisotropy,   cases 
(a) and (b) of (111-38) give 

2TT\    = luP}'1 [K (h ± i)]'X'2      for      h > =Fl       . (111-56) e l   o 

As the field is increased,  the peak wavelength decreases until finally (III-54) is violated.    How- 

ever,   this happens at a field 

H^AM_1r"2      (= 800oe for a TPF) o     o 

which is so high that M  is nearly saturated and the ripple has disappeared.    Therefore,   it is 
-5 -4 only for a film with very large crystallites ( >10      to 10      cm) that crystallite cutoff from the 

term 
,,   .     2. 2,-3/4 (1 + r   k   ) o 

of (III-53) need be considered.    As the field approaches a coherent threshold (h = T 1),  A    becomes 

infinite — another aspect of the threshold catastrophe just described.    The actual conversion of 
LMR into uniform magnetization is prevented by nonlinear interactions which limit the growth 

of the peak ripple wavelength.    Similar considerations apply to case (c) of (111-38),   for which 

2TT\    = 27TA1/2 [K  (1 -h2)]"1'2      for       | h |  < 1       . (111-57) e o 

E.    MAGNETIZATION DISPERSION 

A vital aspect of magnetization ripple remains to be examined,   namely,   its over-all mag- 
nitude.    Perhaps the best measure of this is the magnetization dispersion  6,   the rms angular 
deviation of M(r ) from m  ,   given by (111-42).    This quantity is of great interest for a number 
of reasons.    First,   6  must be no smaller than the observed LMR if our theory is to account for 

ripple.    Second,   if our linearized treatment is to be valid and (III-3c) is to hold,   we must find 

6 « 1       . (111-58) 

Third,   <5   rnay be either measured directly or compared with "anisotropy dispersion," measured 

by a variety of techniques     '       but always near a threshold for coherent rotation.    Finally,   in 

Sec. VI we will relate dynamic effects of the ripple to 6. 
From (111-43) and (111-44) 

62 = —§--  C     kdk C        |<p(k)|2d-i> (111-59) 
(2TT)    

J
O J

O 

where  |<p(k)|     is given by the right side of (111-39).    Replacement of the sum over discrete  k 

by an integral is clearly valid here,   since there is no divergent contribution to the integral near 

k  = 0;  for the same reason,  the fact that the integral goes over k  = 0 while the sum did not is 

of no importance whatsoever in the limit S — °°. 
From (111-39),   and substituting g    from (111-40), the integration over *   is readily performed 

.   . k giving 

r2r2 

*2" —i r t(i+r
0

2k2) (i+xe2k2) (i+*y+\nL_i* >r3/2 
16A      Jo ° e em 

•   (2 + 2\2k2 + X    L_1x)kdk      . (111-60) 
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We now assume that the main contribution to (111-60) comes from k = 0(X      ).    If 
e 

L. « X , (111-61) 

which is only moderately well satisfied for a TPF (L/x    = O.Z),   we may approximate x(kL) by 

its first term,   kL.    (See Eq. (111-20).]   Therefore, since for nearly all films of practical interest 

r    «X    «X (111-62) o e m 

(for a TPF,   r /x    = 5 x 10"2 and A  A     = 2 x 10"3),  the integral in (111-60) has the approximate o     e em ' B KK 

value (which is also a lower bound since x  < kL) 

•1/2   f°° I*  .,2,2.-3/2,1/2 Xm^\     (1 + X.'VT"''''k1/c dk       . (111-63) 
^o 

The integrand in (111-63) has its maximum value at k = l/(\   N/~5); this gives us some confidence that 

the approximations used in obtaining (111-63) are good.   A more rigorous approach — one which is, 

in fact,   necessary if <III-61) or (111-62) are violated,   is to split the integral of (III-60) into seg- 

ments and in each segment expand each factor of the integrand about its largest term;  the seg- 

ments are chosen such that these expansions converge as rapidly as possible.    However,   this is 

a tedious procedure,   and one which must be adapted to the relative values of the three param- 

eters involved,   namely,   r  /x  ,   LA  ,   and X  /x    .    Therefore,   in the present work we shall be 
J>     o'   e e em r 

satisifed with the approximation (111-63). 

Integrals such as (111-63),   of the form 

Kp, q) = \       (l+vfqvPdv (-l<p<2q-l)      , (111-64) 
Jo 

are easily evaluated in terms of gamma functions.    Substituting v = tancp,   (III-64) becomes 

r "z 2 ->       -> 
I(p, q) =   \ (sintp )p (cosij)) q"p~    dy 

37 
where B(x, y) is the beta function      defined by 

«">^ffi^ T(x + y) 

Therefore, 

ir(P+i)r(q 
Tfr,    nl 

P + l, 
2      ' 

«P.q)-              r(q) 

The integral in (III-63) is then 

K3/V<i>i2 

r(|) 

(111-65) 

and inserting this result in (111-60) we find 
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,2, 3 
r (T) /rr„x2 

X /. , ,   /—   \   A   /        m e 
16 V 7T 

2       l   l?'  /lro\        -1/2   -3/2 

[The gamma function,   always written with an argument,   is not to be confused with   r,   defined by 

(III-27).! 

Using (III-36) and (111-37),   and evaluating the numerical constant,   we have the final result 

for the dispersion 

5 = 0.145K,r  M^^L^'VK  A)"3/8 

loo o 
(111-67) 

2 
where by K.  we mean the rms value JK 

For a TPF 

6 = 0.076A"3/8 (111-68) 

on an rms ripple of about 4° in zero field.    This is certainly a reasonable order of magnitude, 
4 /      3 although it must be remembered that the value chosen for K    (5 x 10   erg/cm  ) is a very rough 

estimate. It should be kept in mind that this dispersion includes not merely LMR, but compo- 

nents with wave vectors in all directions and of all wavelengths. Therefore, we expect it to be 

somewhat larger than LMR as measured by Lorentz microscopy. 

For an isotropic film (K    - 0),   K A - i M  H in (111-67);   as the external field H - 0,   the r O O "       o 
dispersion grows very large until (III-58) is violated.    This is a long wavelength divergence 

38 (not unlike the divergence of spontaneous magnetization in a two-dimensional lattice     ).    The 

problem here is that the Fourier components become strongly coupled (see Appendix B),   and the 

iteration procedure which led to (III-39) breaks down.    In fact,   for an isotropic film in zero 

field our Fourier transform method is not a good one,   and an approach such as that  used by 

Rother      is better.    (His main result is a ripple with mean wavelength proportional to r    and 
? *"* 

magnitude proportional to K. r   /A,   where the constants of proportionality are ~10.)    Using 
39 40 

another method,   which differs considerably from ours,   Hoffmann     '       has recently obtained the 

ripple wavelength given by (111-56) and amplitude given by (111-67) with a slightly different numeri- 

cal factor. 

Summarizing the results of Sec. III-E,   we find the magnetization dispersion:    (a) to be typi- 

cally a few degrees;   (b) to be proportional to K.  and the crystallite size;   (c) to vary as the — f 

power of the uniform anisotropy and of h ± 1 (for fields along m    in the easy and hard directions, 

respectively);  and (d) to depend only weakly on the film thickness. 
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IV.    UNIFORM MAGNETIZATION REVERSAL 

A. INTRODUCTION 

Before we consider the dynamic behavior of the magnetization ripple,  it is pertinent to 

examine the process of uniform magnetization reversal,   i.e., coherent rotation with M(r,t) = 

m  (t).    This process is the starting point in the treatment of nonuniform reversal to follow,  and 

it is important to understand how it occurs.    Furthermore,  earlier treatments   '   '      of rotational 

switching have been based on the uniform rotation model (but with a phenomenological damping 

term included in place of detailed knowledge of the dissipative processes involved).    After a short 

description of the uniform rotational mode,  we will formulate the equations of motion in an aniso- 

tropic film;   in Sec. V they will be used in obtaining the dynamic response of the ripple (no ex- 

plicit solution will be necessary for this purpose).    Then we will solve these equations,   with and 

without a damping term,   for an isotropic film;  the overdamped case will be treated somewhat 

more rigorously than has been done previously. 

Rotational switching in a film is a two-step process.    When a pulse magnetic field H    (typi- 

cally a few oersteds) is applied in the film plane at time t = 0,   the magnetization m  (t),   initially 

lying in the plane,   starts to precess about H  .    In doing so it lifts slightly out of the plane (typi- 
-2 P 

cally 10      radian),   creating a normal demagnetizing field equal and opposite to the normal com- 
_» 2 

ponent of 47rm    (typically 10   oe).    The magnetization now processes about this larger field in a 

nearly planar path. 

However, this uniform mode has acquired an energy — H    •   m   (0) from the external field; as 

a result, in the absence of any dissipative mechanisms, m    must continue to precess indefinitely. 

If there is a slow energy loss,   m   will experience damped oscillations about its equilibrium direc- 

tion near H    (at H    for an isotropic film);  if the energy loss is rapid,  m    is overdamped and 

reaches equilibrium without oscillations.    In many switching experiments oscillations are not ob- 
42 10 served (but see,  for example,   Dietrich and Proebster      and Hearn     ),   so that in the phenomeno- 

logical theory of Sec. IV-D the overdamped case is of great practical interest. 

B. EQUATIONS OF MOTION 

The gyromagnetic equation for a uniform magnetic moment density m  (t) is [see (1-2)] 

dm _^       _p_ 
,,     = —ym   x h    + damping term (IV-1) 

where y  is the absolute value of the gyromagnetic ratio and h    is the spatial average of the 

effective magnetic field in the ferromagnet.    For a thin film this effective field may be taken 

as the external field (pulse and steady),   the uniaxial anisotropy field,   and the uniform demag- 

netizing field —47rm    •   i   i    [see (II-24a) ]. 

As long as we remain ignorant of the specific loss mechanisms,  we can only guess at the 
12 

form of the damping term.    Landau and Lifshitz       proposed 

X       m   x (m   x h ) (IV-2) ->       HI '-    \ 111 "•    11 

|m   |2      ° °        ° 1     o' 

where \  is a positive constant of dimensions sec     .    A slight modification was suggested by 
18 

Gilbert,     who used a Lagrangian approach and a Rayleigh dissipation function to arrive at 
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dm dm 
—T-2  = -ym    xh    +   —— m    x -—^ (IV-3) 

dt '    o        o       i —   i       o dt 
m 1     o' 

where   a   is a dimensionless positive constant.    However,   it is easy to show that these damping 

terms are equivalent,   except for a contraction of the time scale.    Taking the dot product of m 

with (IV-3),  we see that 

dm 
m    •   —TT- = 0 (IV-4a) 

o        dt 

m       = const,   E M . (IV-4b) 
'     o1 o 

Note that  | m   |   is also conserved if a damping term (IV-2)  is assumed instead.    Now,   taking the 

cross product of m   with (IV-3),  using (IV-4a,b),  and rearranging terms,  we find 

,    dm 
(1 + a  ) —JT

2
 = -ym   xh--^mX(mXn) (IV-5) 

dt '    o        o      M o o        o 
o 

2 -1 
Thus,   if we let t'  = (1 + a   )     t in (IV-5) and make the substitution 

\ = ayM (IV-6) 

the Landau-Lifshitz and Gilbert forms are identical.    The contraction of the time scale is unim- 

portant if a « 1,  but as a -* °°,   (IV-5) gives 

dm 
°- - 0 (IV-7a) 

dt 

whereas 

dm 

"dtT ^ -       • <IV-7b) 

In other words,   in the limit of large damping,   the switching speed goes to zero for Gilbert 

damping but becomes infinite for Landau-Lifshitz damping.    The latter situation seems physically 
41 43 

unreasonable,   as pointed out by Kikuchi.       Callen      has suggested a more general form of the 

damped gyromagnetic equation,  the various parameters of which may be associated with specific 

physical processes.    However,   the difficulties one would encounter in attempting to use this 

approach to describe a s,witching process (in which m    is initially far from equilibrium) are 

probably insurmountable.    The Gilbert equation will suffice for the purpose of this section,   and 

we now proceed from (IV-5). 

We shall use a spherical coordinate system for m    as shown in Fig. 7 where the + x-direction 

is the easy direction of uniaxial anisotropy nearest m  (0).    In an isotropic film we take m   (0)  = 

M   i If we let E   (0   , a   ) be the energy of m    in the external,   demagnetizing,   and anisotropy ox o     o  ^o &l/ o > & 6> rj 
fields,   then the effective field is 

h    =-V      E (IV-8) 
o —      o 

m 
o 
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I    (normol  to film plane) 

Fig. 7.    Coordinate system for dynamic case. 

and the spatial components of (IV-5) are 

2    dG 

(1 + a  )  —j£- ^j- ^p  ae 
o        o o        o 

3E                  3E 
y       o _ ay o (IV-9a) 

and 

, duj 9E 3E 
i»   ,      2.     •    ^-v o y o       ay o (l + O ) Sineo — = ^ gg- - ^ ^~ 

o        o o        o 
(IV-9b) 

We consider an external field H  in the film plane at an angle  B  to the x-axis.    Then the energy 

E    is given by 

E    =-m    •  H + 2Tr(m    • 1 )2 - K M ~2(m    •  T )2 

o o oz ooox 

2 2 2 2 
•M  H sin 9    cos(u?    - B) + ZTTM     cos   0    -K    sin   9    cos   m 

o o ^o o oo o o 
(IV-10) 

with derivatives 

1      ^^ 1 2 
^—  TT^— = —H cos 9    cos (m    — B) — 27rM    sin 29    —r  H„ sin 29    cos   <p 
M     39 o ^o o o      2     K o o 

o        o 
(IV-lla) 

, 3E , T 

^nr- T;  = H sin 9    sin {<p    — B) + -^  H,, sin   9    sin Zw 
M 3(0 o ^o 2      K o vo 

o     ^o 
(IV-lib) 

where the anisotropy field is defined by 

2K 
II 

K        M 
(IV-12) 

We next let 

ro o      2 
(IV-13) 

and make the key assumption that during the entire switching process m    is confined nearly to 

the film plane,   or 
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\4>0\   « 1       • (IV-14) 

It is easy to see from the energy expression (IV-10) that the condition (IV-14) will be well satisfied 

provided 

4TTM    »H (IV-15) o v ' 

because the magnetostatic energy created in lifting m    out of the film plane an appreciable angle 

is then much greater than the energy available from the external field.    The requirement (IV-15) 

is indeed met for all experimental situations of current interest.    Also,  we shall verify (IV-14) 

for the solutions to be found in Sees. IV-C and IV-D.    The condition (IV-14) will enable us to 

separate the coordinates in (IV-9a, b),  but even if it were violated we could still proceed in the 

next section with the calculation of the dynamic response of magnetization ripple.    However, 

the simplification introduced by (IV-14) is so great that at the risk of some loss in generality 

we will assume it holds in all that follows.    Then with the further requirement 

4TTM    » H„ (IV-16) 
o K 

which is invariably met in practice,   (IV-lla, b) become 

,      9E 

NT  892a'4,rMo*o (IV"17a) 
o       o 

__^.Hsin(%-0) + IHKsin2%      . (IV-17b) 
o       o 

We next generalize (IV-17b).    Consider a step function pulse field 

H (t) = H    = const.       t > 0 
P P 

= 0 t < 0 (IV-18) 

at an angle /3    to the x-axis,  and a constant bias field H,   at an angle /3, .    Then (IV-17b) becomes 

3E 

M--^2=Hpsin^o-V+HbSin(<po-^b»+  2   HKSin2% dV-17b-l) 

for t > 0,  and (IV-17a) is of course unchanged.    We note at this point that in the usual experimen- 
tal arrangements either 

0p = »      ,       /3b = f <IV"19a> 

0 </3    < 7T      ,       Hfe = 0 (IV-19b) 

In the first case [(IV-19a) ],   that of a hard axis bias field and an easy axis switching field,  the 

notation 

H    — Hi I 
P II 

Hb - H± (IV-19c) 
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is conventional.   In the second case (IV-19b), 90° switching with /3    = tt/Z is most common.   Other 

arrangements are possible,  but experimental difficulties invariably render them undesirable. 

Inserting (IV-17a) and (IV-17b-l) in (IV-9a,b),  and using (IV-13) and (IV-14),  we find 

2    d*o 
U + O  ) ~5t- = <V(«'o)-aa,m*o (IV-20a) 

->   dep 2,     ^o 
(l + «  )^r ^Jo^V^o' (IV-20b) 

where 

h      '    p 

a;       = y47rM m     ' o 

II, 1   HK -p(<p   )  = sin(cp    -p  )   + w sin(<p    -fl  ) + 7  jj- sin2<,, 
P P 

(IV-21a) 

(IV-2 1b) 

(IV-21c) 

7 -1 The precessional frequency in the pulse field is uv and is typically 5X10   sec     ;   CJ      is the 

precessional frequency in the demagnetizing field for m    perpendicular to the film plane and is 
11-1 ° — 

1.9 X 10      sec      for a TPF;  p(<p   ) is proportional to the planar torque on m   .    It is convenient 

to introduce a dimensionless time variable 

w.w     t v    h   m 
(IV-22) 

and to normalize the angular deviation of m    from the film plane by the substitution 

ffo = e (IV-23) 

where 

e =   / —- « 1 
/ u 

V     m 

The   small parameter   t   is  typically 1.5 X 10 

parameter 

(IV-24) 

We also define a normalized  damping 

Equations (IV-20a,b) then become 

(IV-25) 

2   2 
[i + e   v  ) a    = p((p   ) — va o     r ^o o (IV-26a) 

2   2 2 
(1 + e   v ) <pQ= aQ + e   vp((pQ) (IV-26b) 

where the dot indicates differentiation with respect to T.    For the purposes of Sec. V,  the phe- 

nomenological damping will be small {v < 1),   and (IV-26a,b) may be approximated by 

o    = p(a>   ) — vu o      H ^o o 

w     = <J ^o        o 

(IV-27a) 

(IV-27b) 
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The qualitative description of rotational switching given in Sec. IV-A is reflected in (IV-26a,b) 

[or (IV-27a, b) ].    The primary precession about the external field (plus uniaxial anisotropy field) 

is described by (IV-26a),  and the secondary precession about the normal demagnetizing field by 

(IV-26b).    We see that it is mainly the primary precession which is damped; this leads to a re- 

duced demagnetizing field and therefore a slower secondary precession. 

Initial values of a   and <p    are determined by minimizing the energy E    for t < 0.   Equations 

(IV-17a) and (IV-17b-l) give [using (IV-23)] 

%<°> 
Hb sin \<pQ{0) - 0b] +  2  HK sin 2^(0)  = 0 

with the added condition 

(IV-28a) 

(IV-28b) 

32E 

O    dcp 
= Hfa cos [<p   (0) - 0b] + HR cos 2<po(0) > 0 

t<0 

(IV-29) 

For the usual arrangement /3,   = T/2,  (IV-28b) and (IV-29) give 

H, 
„o<0) II 

K 
(0 ^ Hb < HK) (IV-30a) 

(Hb^HK) (IV-30b) 

[The case (IV-30b)  is trivial,   as no switching occurs.] 

To conclude Sec. IV-B, we examine the behavior of the uniform mode in the vicinity of its new 

equilibrium direction at the completion of the switching process.    This direction is determined by 

lim 
dm 
 c 

dt 
(IV-31) 

or,   equivalently,   that the energy E    is minimized for a    and <p    at t -*• ».    Either way,  we find 

lim  a  (t) = CJ    =0 
o o t—•» 

(IV-32a) 

lim p[<p0(t))sP(cp0) =0 (IV-32b) 

We  expand  (IV-26a, b)   about  a    and  0     and,   assuming  that  a     and   (<p    — 0   )   vary  as 
•y       -y A OO OOO 

exp[fi(l + g   v )     T],  arrive at the characteristic determinant 

n + v 

ft — e   vp' 

= 0 (IV-33) 

where 

dp 
d«> 

^o=<^o 

(IV-34) 

Dropping terms of order e   ,  we extract from (IV-33) the critical damping 

36 



v    = 2 sl-p' (IV-35) 

or,  with the help of (IV-21c) and (IV-24), 

a     =        2 [H    cos(J    -0)+H,   cos(<?    - p. ) + H„ cos 2<^   p2     .       (IV-36) 
c       /^p l   P ^o     V        b ^o     Mb K "o1 

\l o 

If a < a   ,   m    overshoots equilibrium and experiences a damped oscillation;   if a > o   ,   m 
V v 

reaches equilibrium without oscillations.    Note that if p' > 0,   the equilibrium direction <p    is 

unstable;  thus the threshold field for irreversible rotation through any equilibrium point <p     is 

determined by 

p = p' = 0       . (IV-37) 

(See p. 22.) 

C.     UNDAMPED UNIFORM  MODE 

An independent measurement of  a   may be obtained from the linewidth in ferromagnetic 

resonance.    Although there may be dissipative processes in large-angle switching which are not 

operative in small-angle resonance (and indeed it is one purpose of this work to uncover such 

processes),   the microwave resonance damping constant a provides a measure of "intrinsic" 

loss mechanisms (the details of which we will make no attempt to treat) and a lower bound on the 

total damping.    Various measurements in Permalloy films at microwave frequencies 

give a =* 10 which is barely less than a    for the usual switching experiments. & res J c e>      r 
As an approximation to this slightly underdamped situation,   we solve (IV-27a, b) with v = 0 

for an isotropic film without a bias field.    The equations of motion,  from (IV-21c) and (IV-27a, b), 

are 

a    =-sin(«>    - P) (IV-38a) o o 

m     =a (IV-38b) ^o        o 

with initial conditions 

a   (0)  = v   (0)  = 0       . (IV-38c) 
o o 

Eliminating a    from (IV-38a, b),   we obtain 

ib    + sinU    - P) = 0 (IV-39) ^ o o 

with initial conditions 

<p   (0)  = i>   (0)  = 0       . (IV-40) 

Equation (IV-39)  is the equation of a simple pendulum,   and is readily solved by Jacobian elliptic 
44 

functions.       We introduce a new dependent variable 

u = b tan |   (p - (p   ) (IV-41) 

where 

b = cot-|      . (IV-42) 

37 



Equations (IV-39) and (IV-40) then become 

.2 
u 2

UU        + u = 0 (IV-43a) 
b    + u 

u(0)  = 1 (IV-43b) 

u(0)  = 0       . (IV-43c) 

2        2-2 
An integrating factor for (IV-43a)  is (b    + u  )     ,   from which we find the first integral 

• 2=(b2 + u2)(l-u2) (IV_44) 

b    + 1 

A second integration gives us 

u = cn(r, sin-|) (IV-45) 

which is the main result of Sec. IV-C. 

As expected for a conservative system,   the motion is periodic,   with period 4K(sin/?/2), 

where  K is the complete elliptic integral of the first kind.    The switching time T    may be de- 
—» 

fined as the time it takes m    to rotate from y     = 0 to <p    = /?,   the new equilibrium angle,   and is 

T    = K(sin|-) (IV-46) 

or 

t    = y"1(47rM   H)'1'2 K(sin|) . (IV-47) 

Finally,   we must verify (IV-14).    From (IV-38b) and (IV-41), 

CTo = 7f1^" <IV-48> 
b    + u 

and using (IV-45),   we find 

sn(r, sin y-) 
CT    = sin/3  j-      . (IV-49) 

dn(r, sin -S-) 

This function attains its maximum value at T = r    [see (IV-46)],   and is 

a (T ) = 2 sin4     . (IV-50) 

Thus 

(0  ) = 2e sin4 « 1       • (IV-51) ro max 2 ' 

D.    OVERDAMPED UNIFORM MODE 

In contrast  to  the  damping  deduced  from microwave   resonance linewidths,    the  damping 

actually observed   in  rotational  switching  experiments  is  quite  high,    particularly  in the 

intermediate-speed region (see p. 3),   where one invariably finds 
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v>>i      (Q2>>
4¥1^) 

(IV-52) 

We leave for Sec. VI the question of why this damping should be so great and solve (IV-26 a, b), 
45 for an isotropic film with a damping constant satisfying (IV-52),  by a boundary layer method. 

We first eliminate a    from (IV-26a,b),  obtaining 

2   2 
ro        ^o p = 0 

where for an isotropic film 

p(<P0) = -sin(<po - p) 

%(0) = 0 

i>o(0) 
2 

e   v sin/3 
A    X       2     2 I + e  v 

Next we introduce a new time variable 

t -1 yH 
T   =  V       T   =   1— a 

(IV-53) 

(IV-54a) 

(IV-54b) 

(IV-54c) 

(IV-5 5) 

and transform (IV-53) to an equation for U(T),  where  u   is defined by (IV-41).    The result is 

(IV-56a) 
,.2 d  u 

df2 

2u .du.2 
—2   (df' 2 

b    + u 

,   du   , 
+    -7=     +    U dr -^= + u = 0 

with 

and 

u(0) = 1 

du 
df 

f=0 

where 

e  6 

1 + e   v 

1 + a 

(l + a  ) « 1 

(IV-56b) 

(IV-56c) 

(IV-57) 

We start our analysis with (IV-56a-c).    It might seem at first glance that since  6   is   a 

small parameter,   we   could neglect the first  term of (IV-56a),   retaining the second (damping) 

and third (restoring torque)  terms.    This is the "viscous flow" approximation of Smith    (which 

reduces the problem to an integration for the anisotropic case).    However,  this solution is not 

valid in the neighborhood of f = 0 because there (unless a > 1) du/df is small and the first 

term in (IV-56a) is of order unity.    This boundary layer at T = 0 must be accounted for properly 

in order to apply the initial conditions (IV-56b) and (IV-56c) to the "viscous flow" solution valid 

past the boundary layer. 

Let the solution beyond the (as yet unspecified) boundary layer be U(T),  which we expand as 

a power series in 6: 
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u(f)  =   YJ    
ai<7) fil      • (IV-58) 

i=0 

Inserting (IV-58) in (IV-56a),   we find that the solution to zeroth order in  6   is 

u    = C    e"T (IV-59) o o 

where C    is a constant which must be determined.    Higher order terms U.,u~, . . .   can be found o 6 1     2' 
without difficulty,  but we shall not give them explicitly.    It is obvious from (IV-56a) that they will 

each contain a single undetermined constant C., C?, .... 

To solve (IV-56a-c) within the boundary layer,   we first expand the time scale through the 

change of variable 

v = amf      (m < 0) (IV-60) 

where m will be chosen such that the boundary layer, in which the first term of (IV-56a) is not 

negligible, is given by 0 ^ v £ 1. We next let the complete solution to (IV-56a-c), valid for all 

time,  be 

u = u(f) + 6nw(v)       (n > 0) (IV-61) 

where  n will be chosen such that w = O(l) for 0 ^ v £  1.    Since u -» u for v » 1,   we require 

lim   w(v)  = 0 (IV-62) 

With these new variables,   (IV-56a-c) become 

6u" + 62m+n+1w"- 26   (" + 6"W)  (°' + 6m+nW')2   + U' + 6m+nw' + u + 6nw = 0 (IV-63a) 
b    + (u + 6nw) 

u(0)  = u(0) + 6nw(0)  = 1 (IV-63b) 

, ,   , _    2 
u'(0)  = u'(0) + 6m  nw'(0)  = -6     e    =  9L^ > - 1 (IV-63c) 

1 + a 

where u' = du/df, and w' = dw/dv. Now let us assume that w is a well-behaved function so that 

w' and w" are of order unity for 0 ^ v < 1. Then the boundary-layer width is determined by the 

condition that coefficients of w' and w"  in (IV-63a) are of equal order in  6,   giving 

m = -1       . (IV-64) 

The initial values of w   and  w1   are found from (IV-58),   (IV-61),   (IV-63b),   and (IV-63c) to be 

w(0)  = 6"n [1 - u  (0) - 6u1(0) - . . . ] (IV-65a) 

and 

w'(0)  = 61"11 [-6'V -u^(0) -6u^(0) - . . . ] (IV-65b) 

The exponent n and the constant C of (IV-59) are then determined through the requirement that 

w(0) and w'(0) remain of order unity as 6 -*• 0,    From the first two terms in (IV-65a) we must 

have either n - 0 or u  (0) = 1.    However,   if n = 0,   the leading terms in w'(0) are of order 6  and 
2 ° — 

e  ,   in violation of the above requirement.   Therefore u (0) = 1,   or from (IV-59), 
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C    = 1      . (IV-66) 
o 

But now u'(0)  =—1,   so that the largest term in (IV-65b)  is 6 (remembering that 6     e    < 1), 

from which we see that 

n = 1       . (IV-67) 

Next we expand w  as a power series in  6: 

w(v)  =    Y,    w(v' -51       • (IV-68) 

i=0 

Returning to (IV-63a) with m = — 1 and n = 1,  we find to zeroth order in  6 

w" + w'   =-u'  - u    =0 (IV-69a) 
o o o       o 

with initial conditions given by (IV-65a,b): 

w   (0)  = -u^O) (IV-69b) 

2 
w'(0)  = -u'(0) - —-—2  =   ~~z       • (IV-69c) 

1 + a 1 + a 

The solution to (IV-69a)  is 

w    = D    e"v + D (IV-70) 
o o o 

where D    and D    are constants determined by (IV-69c) and (IV-62),   respectively.    The result is 
o o 

w    = -(1 + a2)"1 e"v       . (IV-71) 

The condition (IV-69b) determines u.(0),   i.e.,   the constant C,.    Then from the next term in 

(IV-68),  w.,  comes the constant C, in u?,  and so on to any desired order. 

Collecting our results,  we have found 

u = e"T + 0(6) (IV-72a) 

and 

^=-e"? +  ^e-f/6+0(6) (IV-72b) 
dT 1 + aZ 

where the second term in (IV-72b)  is of importance only within the boundary layer defined by 

0 < T < 6 << 1 (IV-73a) 

or in real time by 

2 
0 < t <     \ \? . (IV-73b) 

'        o 

The switching time for this overdamped case may be defined conveniently as the decay time of 

u,   which means 

T    = 1 (IV-74a) s 
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or in real time 

's-ya    • <IV"74b> 

From (IV-26b),   (IV-41),   (IV-55),   and (IV-72a, b) 

1           2b          ,   -T        -T/6, ,.,.   _c. u    - — —= TT= (e      - e    '   ) .                                                                            (IV-75) o      v  ,2  ,     -2T ' b    + e 

Thus from (IV-23) and (IV-42), 

(ii  ) a 1 for      7T > /3 > ^ ro max      v 2 

=* -  sin/3      for      | ^ /3 > 0 (IV-76) 

and (IV-14) is satisfied.    A simple physical interpretation can be found for the boundary layer: 

it is the initial interval during which the growth of the component of m    normal to the film plane 

takes place,   i.e.,  the time for the primary precession.    [From (IV-73b) we see that this time 
-11 

has a minimum at a = 1 of 2/w     ~  10        sec.l m ' 
The qualitative results we have obtained here for overdamped switching (and in Sec. IV-C 

for undamped switching) will still be valid for anisotropic films.    But if accurate numerical 

results are desired,   the presence of anisotropy (except for some limiting cases) so complicates 

the integrations that a computer solution becomes advisable.    However,   a rather good approx- 

imation is to replace  H  in the solutions for w    and  a   by H    — H   ..   where H  , is the threshold r o o    J     p pt pt 
field for irreversible rotation [see (IV-37)1. 
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V.    SPIN-WAVE  THEORY:   QUASISTATIC SPECTRUM 

AND TRANSIENT RESPONSE 

A.    INTRODUCTION 

We now turn to the dynamic behavior of magnetization fluctuations,   i.e.,   spin waves, paying 

particular attention to the transient response of ripple to a pulse field;  we also obtain the quasi- 

static spin-wave spectrum and briefly discuss instabilities.    The microwave resonance situa- 
tion,  in which the amplitudes of uniform and nonuniform modes are small,  is rather well under- 

43 46 -* stood in the short-wavelength limit     '      (in which magnetostatic fields for all modes with k =^ 0 

may be replaced by their infinite medium values) and in the long-wavelength,  or magnetostatic 
47 48 limit     '      (in which exchange fields may be neglected).    Our treatment differs from these in two 

important respects.    First, the amplitude of the uniform mode cannot be considered small (it 

may be 180°) and must therefore be retained to all orders.    We avoid some of the difficulty this 
nonlinearity introduces by using a coordinate system rotating with the uniform mode.    Second, 
neither the infinite medium nor the magnetostatic approximations are adequate for a thin film 

in low fields,   since the spin waves most important in switching have wavelengths somewhat 
greater than the film thickness and also involve exchange fields.    In resonance also, these ap- 

49 proximations break down.       This difficulty is surmounted with the help of the thin-film approxi- 
mation (TFA) of Sec. II,  which enables us to consider magnetostatic and exchange fields simul- 

taneously.    (This has already been used to obtain the static solution of Sec. III.) 

We shall assume that random,   local anisotropy forces have no first-order dynamic effects. 
Since these forces are,   on the average,   isotropic,   their dynamic perturbing effects should be 
approximately as great as their static effects; but we shall find that magnetostatic fields grow 

very large during magnetization reversal,  so that we may expect local anisotropy fields to be 
relatively unimportant.    This,  together with the assumption that fluctuations of  M  from m    are 

small [see (I-la)],   implies that ripple components are uncoupled dynamically (as well as stati- 
cally),   since the only linear coupling is via spatially varying anisotropy fields,  as was shown in 

Sec. III. 
Another assumption we make,  in order to avoid excessive complications,  is that damping 

may be neglected.    As far as the uniform mode is concerned, the intrinsic (resonance) damping 
is small, as was noted in Sec. IV; the large damping observed in switching is precisely what we 

are attempting to find a physical basis for, and we therefore avoid any phenomenological treat- 
ment of it.    Damping of spin waves can safely be neglected if it results in relaxation times which 
are longer than the switching time.    If,  on the other hand,  relaxation times are short,  the initial 

Fourier components do not maintain their identity during switching,  and the problem is quite 
_4 

different.    Since the important components are relatively long wavelength (~ 10     cm),  we may 
expect their damping to be about the same as that of the uniform mode in resonance, and we are, 

therefore, justified in neglecting it. 
Finally, we assume that the z-dependence of 6M(r,t) may be ignored (z-axis perpendicular 

to the film plane).    We saw in Sec. Ill that exchange fields sharply attenuate all components with 
wavelengths shorter than an exchange wavelength 2ir\    [see (111-36)] which is typically an order 
of magnitude greater than the film thickness.    Thus,  any components with appreciable z- 

dependence would be expected to have very small amplitudes.    In somewhat thicker films 
o 50 

(>2000A),  standing,  z-directed spin waves,      which can be excited by microwave fields and which 
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depend on the boundary conditions for 6M at the film surfaces,  might play a role in magnetization 

reversal;  we will not consider this possibility in the present work.     (Note also that in our model 

for the microstructure of a polycrystalline film,   local anisotropy forces are constant across 

the film thickness,  precluding z-dependent dispersion-induced fluctuations of M.) 

B.    EQUATIONS OF MOTION 

The gyromagnetic equation for the magnetization M(r,t) of a ferromagnet,  as given by (1-2) 

without damping,  is 

«1> - -yfeff,r,t, ,V-1, 

where 

feff = M(r*,t) XHeff(r,t)      . (V-2) 

Separating the spatially varying part of M by (I-lb) and H   ,., by 

Heff = hQ(t) + <5H(r",t) (V-3) 

[where h   (t) is the spatial average of H  ff(r,t)],   and taking a spatial average of (V-l),  we find 

dm 
-ym    xh    -y<6MxSH)      . (V-4a) 

This equation for the uniform mode, with the second term on the right side replaced by a phe- 

nomenological damping term,  was discussed in Sec. IV.    The nonlinear reaction of spin waves 

on the uniform mode is described by this second term and will be computed in Sec. VI.    Sub- 

tracting (V-4a) from (V-l),  we obtain the dynamic equation for fluctuations of the magnetization 

Jj- 6M = -y(m    x 6H - hQ x 6M) - y(6M x 6H - <6M x 6H»       . (V-4b) 

Since (as we shall find) 6H is proportional to 6M (or,   strictly speaking,  to an integral operator 
on 6M),  the assumption (I-la) enables us to neglect,   to a first approximation,   the second term 
on the right side of (V-4b),   which contains the effects of interactions among the components of 

6M. 
This becomes clearer when we expand 6M and 6H in Fourier series: 

6M(r, t) =     Yi     m^(t)elk'r (V-5a) 
kVo     k 

6H(r,t)  =     YJ    h_Jt)elkr       . (V-5b) 
k^O    k 

Then (V-4a) becomes 

dm 
-ym   xh-y     Y.      in    xh (V-6a) 

dt O O 
k^O k "k 
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and the k^O components of (V-4b) are 

~5z- = -v(m   x h_, - hn x m_J - y       £      •~ -. x n*-,      • (V-6b) 

We will show below that the k      component of the field is related to the k      component of the 
magnetization by a field dyadic K    :' 

k 

mjt) 

h.Jt) = H_(t) •   -±—      . (V-7) 
k k o 

Then the same iterative procedure that was used to solve (III-23a,b) may be applied to (V-6a,b), 

with the resultant first approximations 

dm 

-ar = -*»o x ^o <v-8a' 
and 

—r-^- =-y(m   x h    - h    x m   )      . (V-8b) 
a °       k        ° k 

We use a coordinate system based on m  ,  as shown in Fig. 7,   in which the spatial compo- 
nents of m    are written 

k 

m_ = M   (T   m_ + ?  9_ + TO =  M  (m    , 0_, <p    )       . (V-9) 
k omk Wk        V   k °kkk 

With the spatial components of h     given by 
k 

h_ =  (h•, h®,h^)       (all  k) (V-10) 
k k       k      k 

and using the relations 

~im = W.%-% sin9
0) (V-lla) 

"ig, = (-e0'
0>0 cos9o) (V-llb) 

\ = (-%slne
o.-%coseo,0) (V-llc) 

(which are most easily found by inspection of Fig. 7),  we obtain for the  i    -component of (V-8b) 

t If spatially varying forces such as local anisotropy are present, (V-7) has an additional term M      ^   H_^      • m    , 
o 

and the components are coupled. k'     k-k'        k' 
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However,  (V-8a),  in terms of the field components (V-10), becomes 

dG 

~£ = ?ho* (V-13a) 

d<p „ 
^sinGo=-yho (V-13b) 

and inserting these in (V-12) we find 

dm 

0       . (V-14) dt 

Since m     is initially zero, 
k 

m   (t) = 0 (V-15) 
k 

in our first (linear) approximation.    [We could also have obtained (V-15) from the  constraint 

|M|  = const. = M   , which follows from (V-l) and (V-2).]    From (V-13a, b) and (V-15), the "L. and _^. o 0 
i    components of (V-8b) are then 

de^ 

-gf =-y(h0
m+ hQ

e cote  ) ^^ + ?h^ (V-16a) 
k k 

d(p 

-^- = -y(ho
m + ho

9 coteQ) e_-yhf (V-I6b) 
k k 

The exchange contribution to h    is found from (1-4) 
k 

H    = -^4  v2M (V-17) 
M 

o 

with Fourier components 

(O   = --H  k2m^ (V-18) 
v k'e M k o 

The magnetostatic contribution is given in the TFA by (II-24b): 

(hj     = -4JT l^i- x(kL) +T Tx(kL)    •   m_ (V-19a) 
v  k'm l k" Z J k 

where 

-1    -K 
X(x) = K      e       sinh*       (= 1 - K   + . . .  for K « 1) (V-19b) 

X(t) = 1-X(«) (=K-| K
2
 +.    .  for K « 1) (V-19c) 

Finally,  the effective uniaxial anisotropy field [see (III-2)] is 

»a = HKTxTx'   W- <V"20> o 
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with Fourier components 

(h* )    = H„T T   •   T (V-21a) o a        K x x       m l ' 

m 

fc)    = HKTxTx •    NT       • <V"21b> k'a o 

We see from (V-18),  (V-19a),  and (V-21b) that h^ can indeed be expressed in the form (V-7), 

with 

K    = -4,Mo(x~  4   + xtzT ) - ff   k
2T + HKTxTx (V-22) 

k v       k ' o 

where   I   is the idemfactor, or unit dyadic.    The vectors in (V-22), in the (m,6,<p) coordinate 

system,  are 

k"     _» 
77 = | (*) = [sin 6    cos {(f>    -*), cos9    cos {ip    — <i>), —sin (<p    — *)] (V-23a) 
K O O O O O 

T   = (cose   ,-sine   ,0) (V-23b) 
ZOO 

Tx = ?(0) (V-23c) 

where the wave vector k lies in the film plane at an angle   *  to the x-axis.    We also note that 

(V-l6a,b) contain the factor 

hm + h9cote    =csc6hp (V-24) o o o o o 

where h" is the component of the uniform field along the projection of m    onto the film plane. 

It is convenient to write (V-16a,b) in the form 

-   -a)    „6     -w       (p (V-25a) dt <p0   £• cpcp   k 

-HT = "ee9^ + "e/^     • (v""b) 

For the case of an external field H  in the film plane at an angle B  to the x-axis,   and m    nearly 

in the plane such that 

\ip   I « 1      (ip    = 6    - I) (V-26) 1   o' o        o      2 v 

we find, with the help of (V-2 la),  (V-22), (V-23a-c), and (V-24), 

2 2  2 ~   2 2 
wQC, = w,   cos (<5    — j3) + o)    cos   q>    tu   L k    + u      \x>P     cos   (to    — *) + vl (V-27a) 66        h ro a ^o        e m |A-To ro AJ ' 

oo        = to.   cos l(p    — B) + u>    cos 2<B    + w   L k    + oo    Y  sin   (u>    — *) (V-27b) <pcp h vvo a ro e mA lvo 
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W9V = %e =-J 1>0[-<»aismZ<po + wmZsm2(cpo-i)] (V-27c) 

where 

^h = y|H| (V-28a) 

"a = yHK (V-28b) 

"     = y      ZA
? (V-28c) 

Ml/ o 

wm = y4^MQ       . (V-28d) 

Note that our definition of the exchange frequency u>     is not the conventional one,   since it is based 

on the half-thickness of the film   L,   rather than on the lattice constant  I .    Equations (V-13a, b), 

which describe the uniform mode,   now become 

d*o 1 
"df  =-"hsin(«>o-/3)-u;a j sin2% (V-29a) 

d<p 
—T7—  = >p    [w,   cos(ip    — (3) + OJ    cos   a>    + w„]       . (V-29b) dto'h ^o a ^omJ 

The coupled, linear equations (V-25a,b),  in which the coefficients u>.. are,  in general, time 

dependent through the time dependence of ip    and ip   ,  describe the motion of the components of 

6M out of the film plane (9_J and in the plane (<p   ).   In Sees. V-C and V-D we will find quasistatic 
k k ^ 

spin-wave solutions (with ip  , ip    constant) and transient solutions (with  H  turned on at t = 0). 

C.    QUASISTATIC SPECTRUM 

Here,   we assume that there exists a time interval over which 4'  (t) and 0   (t) may be con- o o J 

sidered constants while  B   (t) and ip   (t) are rapidly varying.     Then solutions of  (V-25a, b) are 
k k 

spin waves with time dependence 

iio   t 
k 

where the eigenfrequencies u>     are given by 

(V-30) 

2 2 
a>     = w_ _a)        — a)^. . (V-31) r* 99    cp<p Qcp ' 

We first examine the spectrum (V-31) for the usual resonance situation of oscillations about 

a stable equilibrium.    Then tp    and <f>    are given by their equilibrium values ip    and ip    [which 

may be found from (V-29a,b)] 

i   = 0 (V-32a) o 

H sin(^Q - p) + j H     sin 2^    =0 (V-32b) 

4H 



with the stability condition 

Hcosftf    -/3) + H„ cos2a>    >0 vvo K ^o (V-32c) 

Inserting ip    and 69    in (V-27a-c),  (V-31) becomes 

2r ,v        „, 2v T 2, 2 , oj     = |OJ,   cos (a)    — B) + OJ    cos   <p    + OJ   L k    + OJ    Y 1 
r-     '   h xvo a ^o e mAJ 

X [OJ,   cos (a;    — B) + oj    cos 2<p    + OJ   L k    + OJ    v   sin   (a>    — <i>) lh ,v^o a ^o e mA ^o (V-33a) 

The eigenfrequency of the uniform mode may be found by expanding (V-29a,b) about ip    = 0, 

69    = 69   ,  or from (V-33a,b) in the limit k -» 0,  and is given by 

Ci V 2   v V V 
O)      =  \(X1,    COS (69     — B)  + OJ     COS    69     + OJ      ] [oj,    COS (69     — 8)  + a)     cos 2g9    1        . (V-33b) 

o      L   h ^o a ro        nv L   h vvo     r a ro' ' 

If the external field is much greater than the anisotropy field,   <p    = B,  and (V-33a,b) become 

(for H along i ) 

m m 
2 2   2 2   2 ~        2 

CJ     = (OJ,   tu  L k    + UJ    x) (a),   + OJ   L k    + OJ    Y sin   4>) 
-*~ h e 
k 

OJ      = OJ, (OJ,    + OJ     ) 
o h    h m 

(V-34a) 

(V-34b) 

which are shown in Fig. 8 for a TPF in a field of 800 oe.    In the infinite medium limit kL, — °o 

(V-35) 2 2   2 2   2 2 
OJ      -» (OJ,   + OJ   L k  ) (OJ,   + OJ   L  k    + OJ      sin   4>) 

r* h       e he m k 

43 

•IK 

which is the dispersion relation for a thin disk magnetized in its plane as given by Callen.       Ex- 

tending this spectrum to k = 0 (see Fig. 8), we see that the uniform mode lies at the top of the 

spin-wave manifold (* = 7r/2),  in contrast to the TFA spectrum (V-34a),  which collapses to a 

point as k  —0.    We also show in Fig. 8 the magnetostatic modes found by Damon and Eshbach 

Since the location of the uniform mode relative to the spin-wave manifold determines the coupling 
43 46 

of the uniform mode to spin waves,    '      the distortion of the infinite medium spectrum at long 

wavelengths by magnetostatic fields will have profound effects on resonance phenomena in thin 
51 

films.    Such effects have been observed by Comly,   Penney,  and Jones      at high microwave 

power levels; their results show that the bottom of the manifold is indeed correctly described 

by Eq.(V-34a) with * = 0.5E 

Spin-wave solutions of the linearized equations of motion (V-25a,b) and (V-29a,b) also exist 

about unstable equilibria of the uniform mode (ip   , <p  ),  which are associated with magnetization 

reversal processes,  and which may be found from Eqs. (V-32a-c) with the inequality of (V-32c) 

reversed.    The dynamic trajectory of the uniform mode may not pass through the point ip    = 0, 

but because of the condition (V-26) [see (IV-51) and (IV-24)] this makes very little difference in 

the dispersion relation for OJ   .    It has been pointed out     '     '      that the spin-wave eigenfrequen- 
k 

cies will then be imaginary for a certain set of wave vectors, and that unstable solutions with 

time dependence 
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Fig. 8. Resonant modes of a thin film in a planar field of 800 oe in thin-film 
approximation (average over thickness), spin-wave approximation (neglect 
magnetostatic boundary conditions), and magnetostatic approximation (neg- 
lect exchange fields) (for a TPF). 

INVERTED SPECTRUM  (m„ unstable) 

 NORMAL SPECTRUM  (m„ stable) 

Fig. 9. Schematic illustration of inverted 
and normal planar mode spectra (thin-film 
approximation). 
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Q   t 
k (fi     = ioj     > 0) (V-36) 

k k 

may be important in switching.    We now show that the growth time (for increase in amplitude by 

a factor e) of the fastest growing spin waves is approximately the same as the coherent rotation 

reversal time,  so that switching is completed before any spin-wave amplitudes increase much 

above their equilibrium values. 

It is easy to see from the dispersion relation (V-33a) (remembering that we are only inter- 
2 

ested in low fields,  i.e.,  co,   « w    ,  u>    « u>    ) that unstable spin waves (a;     < 0) will exist 
h m       a m ^ C* 

providing 

,2A A A 
— (co    sin   w    + w    Y) < ci>,   cos(u>    — B) + UJ    cos Zip v   a ro        mA h xvo     r'        a ro 

+ w   L2k2<-u)    xsin2(£    - *)       . (V-37) e mA ^o 

The fastest growing of these will have $ = cp    (propagation along m  ) and kL « 1,  so that their 

growth rates are 

a     ^ LJ 
1/E [-U.   cos($    -B)-OJ    cos 2^    -co   i/k2]1'2 > 0       . (V-38) r*        m     L      h VYo     ^'        a Yo        e ' v ' k 

In Fig. 9 we sketch the "inverted" spectrum (m   unstable) and, for comparison, the normal spec- 

trum.    From (V-38) we have the important result that the growth rate of spin waves in a thin 

film in un; 

mode, or 

film in unstable equilibrium in low fields («47rM  ) is bounded by the growth rate of the uniform 

fi_    <QQ = y(47rMo)l/2 f-Hp cos ($Q - 0   ) - Hb cos ($Q - /y - HR cos 2A
Q]l/2 (V-39) 

(kV0) 

where we have generalized the external field H as described on p. 34.    This result, which strongly 

suggests that spin-wave instabilities will not greatly influence the behavior of the uniform mode, 

may be made more precise by comparing the maximum growth rate for spin waves,   Q   ,  with 
-1 ° the inverse switching time, t      ,  obtained in Sec. IV.    From (IV-47),  and using the approximation 

suggested on p. 42, we find 

t"1 = y [4TTM   (H    -H  J]1'2 J(B   ,B, ) (V-40) s ' l        op        pt" "p    b 

where J ~ 1, except for H,   = 0 and /3    = TT t and reduces to l/[K(sin \ B) ] for H,   = H„ = 0.    The 

pulse threshold field H , is the field at the transition from stable to unstable equilibrium, or 

H  4cos(3    -/3)+H,   cos(S    -0, ) + H„ cos2S    =0       . (V-41) pt (Yo     ^p' b ^o        b K ^o v 

Inserting (V-41) in (V-39) we obtain 

t P = it is a pathological case of balanced unstable equilibrium, and we shall exclude it from our treatment. 
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QQ = y [-4;rMo(Hp - Hpt> cos ($Q - /3)]l/2 (V-42) 

-1 
which is never much greater than t & s 

The results obtained in Sec. V-C are valid whatever the origin of the magnetic fluctuations 

— thermal agitation,   inhomogeneities,   anisotropy dispersion,   etc.,  — and are,   therefore, 

completely independent of our random anisotropy model.    In the following pages we shall consider 

transient spin waves in a step function field H  ,   taking as initial values the dispersion-induced 

ripple components of Sec. III. 

D.    TRANSIENT RESPONSE 

We first rewrite (V-25a, b) with the normalized variables (see (IV-22) to (IV-24)] 

T =   /w.w    t = y  kirM  H  t (V-43a) 
v    h   m       ' \l        o   p 

a    = e~lip (V-43b) 
o o 

where 

H , 
&-  = O<10~*) (V-43c) /47rM 

V o 

These variables have been chosen such that during magnetization reversal ip   ,   \ a   \,   and a    are 

O(l),   as may be inferred from (IV-38a, b) and (IV-50).    (The dot indicates differentiation with 

respect to T.)    The equations of motion of the spin-wave components are now 

6     = -G   _G     - G      <p (V-44a) 
k <"e   k «k 

V     = GeeG     + G       v (V-44b) 
k k ^   k 

with initial conditions 

B_J0) = 0 (V-45a) 
k 

<P_(0)       given by (111-35) (V-45b) 
k 

where 

Gee = e"lx+ e (ao  [* cosZ(cpo-<I>)-x]+(AAe
2k2 + sin2^o) h^1 -p'{<pQ)} + 0(e2) (V-46a) 

Gip<p = €~^ sin2(<po-<J.)+e   [AXe
2kZh-1-p'(<p0)] + 0(e2) (V-46b) 

G6«, = G
ve - -2 V sm2(%-*) + 0(e2)       . (V-46C) 

Here we have written the exchange field in terms of the exchange length X  ,   defined by (111-3 6). 

The remaining parameters in (V-46a, b) are 

MB., h, ) = cos Zcp   (0) + h,   cos [0,   - <p (0)1 (V-47a) 
'D     b o b bo 
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H. 
h. = YT^-      (i = p, b,   etc.) 

K 
(V-47b) 

b 1 -p'(<Pn) = cos (w    - /3 ) + T— cos (<p    - /5, ) + T— cos 2 <P, (V-47c) 
P P 

[see (111-32) and (IV-21c)].    The uniform mode is described by (IV-27a,b) without damping,   or 

w   - u o        o 
(V-48a) 

a    = p(<p )= —sin (<p   —/3   )— -r—  sin((p   — /3, ) — -77—   sin 2</> 
0*0 *o     *p       h o       b        2h ^o F P P 

with initial conditions 

(V-48b) 

so that 

hb sin[<p (0) -0b] +   2   sin2<pQ(0) = 0 

(Jo(0) = 0 

p[<Po(0)) = sin[/3p-<po(0)] = pQ >0 

For the case (IV-19a, c) of a hard axis bias field and an easy axis pulse field, 

hi 1 
p(<Po) = sin cpQ +  j— cos <P0 -  zhT" sin 2<PQ 

(V-48c) 

(V-48d) 

(V-48e) 

(V-49a) 

P    = hi o        1 (V-49b) 

The finite rise time of the pulse field will not be considered in this treatment;  thus,  p(-r) = 0 for 

T < 0. 

We next eliminate 6_^ from (V-44a,b),   obtaining 
k 

Gee 
f^      r 

k 
1 

with init al conditions 

<pj0) = 0 
k 

<P_(0) ± 0 
k 

G^^G        - G^     + G ee 
ee  cpcp      e<p      e<? G ee e<p k 

(V-50a) 

(V-50b) 

(V-50c) 

As can be seen from (111-35),   and as discussed in Sec. III-D,   short wavelength ripple components 

are suppressed by exchange forces.    We therefore confine ourselves to the long wavelength end 

of the spectrum 

k < X (V-51) 

and in Sec. VI we will show that the main contribution to the spin-wave torque on the uniform 

mode comes from components with k ~ \ With this restriction,  the coefficients of powers 

of  e  in the G. 's of (V-46a-c) (and their time derivatives) are all CK 1). 
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We are now in a position to greatly simplify Eq. (V-50a).    Inserting the coefficients G. . 

from (V-46a-c),   and dropping negligible terms,   we find 

2-1 -2  ~        2 
ip    +  e  x     a AT) $    + e     XX sin   l<pJT) ~ * 1 <P     ~ ° (V-52) 

k 2 k ° k 

wh ere a,(i") = O(l).    We next define a large parameter  X  by 

X = e"1 ^/xx^      • (V-53) 

For kL « 1 

X = t
_1(kL)1//2 (1 - | kL + . . .) (V-53-1) 

and for a TPF with k = X       and H    = 5 oe,   X - 20.    Equation (V-52) may now be written 

ip    + \'Z a  (T) ip    + [\f(r)]2 </>     = 0 (V-54) 
k " k k 

where 

a2(r) = xa^r)       (|a2|<|a1|) (V-55a) 

f(r) = sin[<po(T) - *] (V-55b) 

-2 2 2 
Clearly the "damping" term X     a?<p     is negligible compared to the "potential" term X  f <p    , 

k k 
since  \<p    |  ~ X | f<p    \.    With the notation 

k k 

<p(r) - ^ (V-56) 

k 

our problem is now reduced to solving the equation 

ip +  (Xf(T)]2 <p = 0                                                                                                                                       (V-57) 

with initial conditions 

<p(0) = 1 (V-58a) 

<p(0) = 0 (V-58b) 

where f<T) is given by (V-55b),   <p   is determined by (V-48a-e),   and X » 1. 
2 ° 

The potential (Xf)    has arisen essentially from volume poles which,   in equilibrium,   strongly 

attenuate ripple components propagating in all directions except along ± m  ;   we recall from 

Sec. III-D that the zone of nonattenuated components is extremely narrow.    (See Fig. 5.)    In fast 

magnetization reversal,   however,   volume magnetostatic fields quickly build up to large values, 

since components initially propagating along ±m    "have the rug pulled out from under them" 

when m    rotates,   and go through a transient state resembling the energetically unfavorable 

transverse ripple.    This is shown schematically in Fig. 10.    On the other hand,   although the 

initial very small amplitude components with  k  in all directions other than ±m    do go through 
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INITIAL TRANSIENT 

Fig. 10.    Schematic illustration of initial and transient spin-wave states 
(LMR) in rotational switching, showing creation of volume poles. 

a transient state of low magnetostatic energy,   their amplitudes will not grow much above 

equilibrium values unless very fast relaxation can occur (relaxation time « t ).    However, 

there is no evidence for such a rapid process,   and in any event we are neglecting all relaxation 

in this treatment.    Thus,  we can conclude that the primary effects in magnetization reversal will 

come from spin waves with 4> - <p (0) and * = <p (0) + 7r,  that is,  the initial LMR.    But since 

6M is real,   we see from (V-5a) that 

m _   = in* (V-59) 
-k k 

and it is therefore sufficient to solve (V-57) for * - ip  (0). 

The presence of the large parameter  X  in (V-57),   coupled with the fact that f(r) is not 

rapidly varying,   suggests the WKB method,   for which we refer to Appendix C.    Our main interest 

is in the asymptotic solution (C-14),   which is valid except near free points,   at which f(T) = 0. 

The magnitude and phase of this solution is determined from the initial conditions (V-58a,b); 

but for the components of interest,   T = 0 is at or very near a free point.    Therefore,   a solution 

joining the asymptotic region to the neighborhood of the free point must be found.    We first 

make the substitutions 

T)(T) = CPQ(T) - <pQ(0) 

* = * <p (0) o 

(V-60a) 

(V-60b) 

so that (V-55b) becomes 

f(T) = sin [T)(T) — *] 

with TJ(T) determined from (V-48a-e),   which become 

V(r) = UQ(T) 

OQ(T) = p(n) 

(V-61) 

(V-62a) 

(V-62b) 

r)(0)   = 0 

a (0) = 0 
o 

(V-62c) 

(V-62d) 

p(0) = pQ >0 (V-62e) 

The asymptotic generating function for [\f(TJ]    is given by (C-15) 
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g(T)  = A  JT 
Hi) d£ (V-63) 

T 
o 

where T   is a constant,  as yet unspecified.    We examine g in the vicinity of the free point 77 = *, 

with 

|*| « 1 (V-64) 

in accord with the previous discussion. 

Consider first the case * ^-0,  for which we let 

IJ(T ) = *       . (V-65) 

Since 7)   is initially zero and  *   is small,   the free point T    may be found by expanding rj(r) in a 

Taylor's series about T = 0,   with the result 

rQ =    /— (V-66a) 
\l ro 

provided 

Now we let 

* « PQ (V-66b) 

x = T -TQ (V-67) 

and expand f about T ,  obtaining 

4 

where 

f(x) = PO(TQX +  ^   + Plro fj- + Pl fj- + . . .) (V-68a) 

P1 = P'(0)       . (V-68b) 

Inserting this result into (V-63),   we find 

2 3 

g(x) - ^o(To !r+ ir+ pr0 fr
+ pi fr+ • •) (v-69) 

Ing 

3t2,   given by 

For the limiting case * = 0 (T    =0),   the x    term of (V-69) will approximate  g  for   x  in the range 

x2«^      • (V-70) 

Then, following the argument of pp.79-80, we find that the approximate solution to(V-57) in  'j{? is 

^(x) ^   t^y]V2 J±l/6[g(x)]        . (V-71) 

The asymptotic expansion of <p   [given by (C-ll) and valid in ffl     defined by (C-10b)| is valid in 

part of $, if the inequality (C-23) is satisfied for some x_ in $   •   with v = 1/6 and f     = o   /2 i. ^ 2 2 m      'o 
(C-23) becomes 
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|x2|
3»^      . (V-72) 

Then,   combining (V-70) and (V-72) we arrive at the condition for overlap of j}? and itf^ 

12p„ V   5   / 

3/2 
^»T^rt^) (V-73) 

o 

which is well satisfied except as p —0,  the excluded case of a pulse field antiparallel to m (0). 
(See footnote on p. 51.) 

Now,   suppose * > 0.    Under what conditions will the solution (V-71) still join the asymptotic 

region lR    to the vicinity of the initial point,   x = —T  ?    First,   (V-73) must be satisfied;   but, 
o 2 

second,   and more important,  the largest value of |x| for which the x   term of (V-69) is not 
negligible compared to the x   term must be less than the smallest value of | x |  in 'A   .    For, 
otherwise,   the asymptotic solution will join not with (V-71) but with a solution involving also 
(or exclusively) the first term of (V-68a).    This condition is met if 

T    « (\p  )'i'i (V-74) 

as may be seen from (V-69) and (V-72);   using (V-66a),   (V-74) becomes 

* « {po
l/3x"2/3 s *Q« 1       • (V-74-1) 

If • < 0,   T    as given by (V-66a) is imaginary;   there is a nearly free point at T = 0,   but no 

free point near TJ(T) = 0 for real  T.    However,   we may consider x,   defined by (V-67),   as a 
complex variable and by analytic continuation extend the definitions of f(x) and g(x) into the 
complex domain.    Then all the results for * >0 are equally valid for * < 0,   provided x,   T   , 
and  *   are replaced by their absolute values in (V-66b),   (V-70),   (V-74),   and (V-74-1). 

Collecting our results,   we have found that a solution to (V-57),  valid from the neighborhood 

of T = 0 up to,   but not including,   the next free point (near TJ   = 7r),   is 

*{x) "   [Sra]l/2 (B+Jl/fe[g(x)] + B_J_l/6[g(x)]} (V-75) 

provided the angle *  between the initial direction of m    and the wave vector k of the component 

<p     satisfies 
k 

I* I  « *    « 1       . (V-76) 1     ' o 

Note that what we have found is essentially a * = 0 solution,   as it is based on the * = 0 generating 
function [(V-69) with T    =0].    For  | * |   » •   ,   it is not hard to show that a solution of the form 
(V-75) exists with v = \.    But for |* |  ~ *   ,   no such solution is possible because the asymptotic 

° 2 3 form must be connected to a solution in a range of x for which the x    and x   terms  of (V-69) 

are the same order of magnitude.    However,  we shall show in Sec. VI that the strong inequality 

(V-76) does not exclude any physically important components of the ripple. 
The constants B, are evaluated from the initial conditions (V-58a,b)      At T = 0,   x = — r   , ± o 

so that from (V-69) and (V-74) 

|glT=0^   ko|3«l       . (V-77) 
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Then,   using the expansion of J  (g) about g = 0 
s<s 

jlp)=(S^     V     (g,2m (-1)  
Vg'     [Z'       L    ^Z>        m!i> + m + 1) 

m=0 

(V-78) 

and retaining only the leading term of g 

g(x) - 
\p o     3 

(V-79) 

we find 

V(x) 
' B      /Xp   \-l/6        B,     /Xp   vl/6 

-41 
x + (V-80) 

Then,   since at r = 0 

|x|  «(XpQ) •1/3 (V-81) 

the initial conditions (V-58a,b) lead to the result 

B
+-° (V-82a) 

B^(Xp//br(\)(\)'/Z 
(V-82b) 

Finally,   we obtain the asymptotic expansion of <P(T).    The asymptotic region $     is given by 

(C-lOb) 

(V-83a) 

or [see (V-79)] 

(f Apor
1/3 «r <Tl (V-83b) 

where 

7)(T1) = I + * (V-83c) 

The upper bound T = 0(T ), and since we will not be investigating the behavior of spin waves at 

the end of the reversal process, there is no need to specify T. precisely. From (C-ll), noting 

that <p = 0 in %   ,   we have the resultt 

</>(T) —:—^—• B     /—rjT—\   cos [g(r) — -7-1 
^ T  in IK - \/7rXl(T) ls 6' 

(V-84) 

t Except for changes in the constant B   and the phase ir/6, (V-84) is the asymptotic value of C/>(T) for all *.   A 
computer solution of (V-57), however, has shown that the true constant is approximately equal to B   for *.£ <I<   , 
with maximum error, at * = * , of 15 percent. 
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Fig. 1 1.    Transient response of a planar spin-wave component in rotational switching, 

or [using (V-56) ] 

<^(r) r in 31'   ^(0) C°o*~l/3 Po/b \^)\'X/Z cos [g(r) - \] 
k °°      k 

where 

(V-85) 

(V-86) 

Figure 11 is a sketch of <P(T).    The spin-wave component normal to the film plane may be found 

from (V-44b) and (V-56): 

©^ = G"!. (<p(r) - Gft   «(T)] <^(0) ee e^' (V-87) 

and with the help of (V-46a, c) and (V-53) we find 

(V-88) 

Equations (V-85) and (V-88) comprise the main result of Sec. V-D.    They show that except 

at the beginning and end of the reversal process,  * = 0 spin waves (LMR) precess in an ellipti- 

cal path about m  (T) at a frequency 

g(T) ; (T) = rzr^r 1*1' r* N/    m   h     r k 

= <*>m^xx - ] sinr)(£) d£ (V-89) 

The ellipticity is given by 
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r   (T) = 
k 

e 
cot (g 4- sinrj(T) (V-90) 

_ A 

[In a TPF the important set of components with k ~ A       have, at T)(T) = 7r/2, u;__ 9        -1 35 X 10   sec 

and r We note that the results we have obtained depend only implicitly on the uniform 

reversal mode, except at the very start of switching.    Thus even though we have neglected damp- 

ing,   any real loss mechanism will require a finite time to become effective,   and therefore may 

be included through its effect on tp   (T).    In particular,   the perturbation of the uniform mode by 

spin waves,   which will be treated in the next section,   need not be small for the theory to be 

valid;   m  (T) may be determined self-consistently from (V-6a),   (V-85),   and (V-88). 
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VI.    EFFECT OF SPIN WAVES ON MAGNETIZATION REVERSAL 

A. INTRODUCTION 

Although in static equilibrium ripple has very little influence on the mean magnetization 
m   ,   the dynamic situation is quite different.    As noted in Sec. V,   volume magnetostatic fields 

attain large values during fast rotational switching because k  (for the largest amplitude compo- 

nents) and m    no longer remain parallel.    From an energy viewpoint,   this transient transverse- 
component ripple is created at the expense of the energy — H    •   m  (0) which the uniform mode has 

acquired from the pulse field.    The transient spin-wave state therefore provides a sought-after 

dissipation mechanism for m ,   at least during the first quadrant of switching [0 4 T)(T) ^ 7r/2, 
where T)(T) = <p   (T) ~ <p   (0)].    When T) > IT/2,   if these components cannot lose their energy to the 

lattice or to other components they will return it to the uniform mode,   thereby conserving energy 

(since magnetostatic fields are decreasing).    Thus we expect damping in the first quadrant and 

anti-damping in the second;  this is indeed what we shall find in the calculation to follow. 
However,   a much more striking effect is anticipated:   spin-wave locking of the uniform re- 

versal mode,   which will occur if the magnetostatic energy of the intermediate state is greater 
than the energy available for rotational switching.    Since this latter energy decreases with de- 

creasing H   ,  we may expect to find a critical field H      below which the uniform mode is locked. 
In Sec. VI-C,  we calculate this critical field,   which provides an important point of contact with 
experiment.    We also suggest how rotational switching might take place with H    < H 

These phenomena may also be unHerstood from a torque viewpoint.    The nonlinear spin-wave 
reaction torque on m   ,  which we shall find to be predominantly z-directed,   retards reversal in 

the first quadrant and accelerates it in the second.    If at any point in the reversal process with 

m    in the first quadrant the reaction torque becomes equal in absolute magnitude to the uniform 

reversing torque  i    •   m    x h  ,  the uniform reversal mode will become locked.    We now put these 
ideas on a quantitative basis by computing the reaction torque,   using the results of Sees. Ill and V. 

B. NONLINEAR REACTION TORQUE 

The spatially varying part of the magnetization,   6M(r,t),  will react on the mean magnetiza- 

tion through the spatial average of the ensemble average of the nonlinear contribution to the 
effective torque.    (By nonlinear,  we mean second order in the small quantities 6M/M    and 

<5H/M   ; there is,  of course,  no linear reaction torque.)   This appears in the equation of motion 

for m  (t)  [see (V-4a) ] as a reaction torque 

(TQ)    = (dM X 6H) (VI-1) 

or,   in terms of the Fourier components of 6M and <5H [see (V-6a)], 

(~0r =    Z      •^xh_       • (VI-1-1) r k -k 
k^O 

We recall that the bar denotes an ensemble average and the bracket a spatial average.    The 
spatial components of m     are 

k 
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m     = M  ( i    9     +   i   ip   )       , (VI-2) 
k °    9   k ^    k 

while the spatial components of h   _   are  found  through  (V-7) as  linear  functions of  6        and 

(p Using   (V-59),   we   see  that  m    x h      will contain terms of the following four types: 
-k k        -k 

|e_J2    ;     \<p   I2    ;     e <p*     ;     <p^e*     . (vi-3) 
k k k    k k    k 

For  T   in   :K    (to which we shall confine ourselves in this section),   we have seen that the 

spin-wave components <p    (T) and G   (T) oscillate at a frequency OJ   (T) much greater than the 

precessional frequency of m   .    Therefore,   m    will respond,   not to the instantaneous reaction 

torque,    but to an effective torque which is averaged over the period of this oscillation.    Since 

f(r) is slowly varying,  we may consider it to be constant during one period of oscillation.    Then 

since 9     and <p     are 90° out of phase,   terms of the last two types in (VI-3) give no contribution 
k k 

to the effective torque,   and we are left with 

i    H?*(|eJ2- IcpJ2) MJ7 |*J2-"I H•
9
 |ej2| (vi-4) 

k-k°lmk        k k ek        k 0  k        kJ 

? ? ? i ? 
where the factors sin   (g — 7r/6) and cos   (g — ir/b)  of   | 9    |     and  \<p    \    ,   respectively,   are  to 

k k 
be replaced by their average value   } .    We note that exchange fields (which appear in the diagonal 

elements of K    ) do not contribute to the effective reaction torque.    Also,   since  HT_ « 47rM   Y 
r* M K oA 

[except for extremely long wavelength components which,  we will find,   make no significant 

contribution (t  )   ],  the anisotropy term in K^ may be safely neglected,   leaving only magneto- 
k 

static terms.    Equations (VI-4),   (V-22),   (V-23a,b),   and (V-26) then give 

m^ x h _ = 4TTM 
2 (ijv"  \ sin 2(<p    - *) ( | <pj 2 - | ej Z) 

k-k o      m  o     <; o k k 

+ T0^ \ sin2(<p    -*)   |<pJ2-TJQ [1 -x sin2(<p    -*)]  | 9 J 2)       . (VI-5) 
k ^ k 

We now show that only the  i_-component of (t  )    can have a physically important effect on 

m   .    Taking the ensemble average of m    x h       and performing the sum over  k,   we write 
° k-k 

(T )     = 4TTM   (~T   ip  s      + 7_s_ + 1   tp  s   ) (VI-6) or o     nvo  m        9   9        ipro  <p 

where''' 

Sm((/'o)  = I     X     x(kU sin2(«,o-*)(|</,_^|2- |e_|2) (VI-7a) 

kV=0 

f Strictly speaking, the ensemble averages in (VI-7) should include the factors containing q>0.    However, as was 
noted on p. 21 , random fluctuations of ip   vanish in the limit S •* °° and are therefore of no physical importance. 
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se((p  ) = £    YJ    x(kU sin2{<po-<t.)  \<pJZ (VI-7b) 
k 

kVo 

sJvo
)=~    Z     t1 -x(kL) sin   [<p    -*)]   |ej2       . (VI-7c) 

^ k 
k^O 

From (I-la),   (V-5a),   and (VI-2) we obtain the condition 

rti 2 
i» <l^l  > =   l   (|ej2+ UJ2) (vi-8) 

1\/I  ^ V        \r VI m1- x   k 
° k>0 

from which we deduce the separate conditions 

k 
kV=0 

I e |2 « 1 
k 

E  w- 
k 

kV=0 

1        1 2 
\<pj     «1 

k 

(VI-9a) 

(VI-9b) 

where w     is any weighting function satisfying 
k 

|w   | < 1       . (VI-9c) 
k 

[Note that with w     =1,   (VI-9b) leads to the restriction (111-58) on the magnetization dispersion.] 
k* 

Since 0 < x < *.  these conditions may be applied to the sums of (VI-7),   and we see that 

|sj((p0)| « 1      j = m,   G,  <p      . (VI-10) 

Next we insert the effective reaction torque of (VI-6) into the equations of motion (V-4a) for 

m    and,   with the help of (V-43a-c) and (V-48a, b) obtain o 

m 
—- =-<J s    (m  ) (Vl-lla) m o  m *o 

o 

CTQ = p(<pQ) -e"2se(<po) (Vl-llb) 

w    = a    [1 - s   (<p   )] (VI-llc) 
o        o ' <p     o ' 

where we have neglected random fluctuations of m    and a ,  as well as u>   .    (See footnote,  p. 62.) & _^ OO O i    F • 

We note first,  from (Vl-lla),  that |m   |  = m  (T) is no longer a constant of the motion (|M|  = M 

still is, but now M    and m    differ by (|SM|   )).    However,  the relative change in m    during 

switching is small (since |s    | « 1),  and no profound effects are anticipated.    We next note, 

from (VI-llc),   that the direct effect of spin waves on <p    is small (and therefore of no physical 

importance); with the help of (VI-llc) we may integrate (Vl-lla),   obtaining the implicit solution 

63 



m  (T) = m  (0) exp- \    °      s    (|) d|       . (VI-12) 
00 J0   (0)      m 

However,  because the change in m    is probably not measurable,  we shall carry this solution no 

further (although evaluation of s      is straightforward) and turn instead to the one potentially large 

spin-wave effect — that of s„. 
-2 4 

Since e      » 1 (~10  ),  the second term on the right side of (Vl-llb),  which comes from the 

i   -component of the reaction torque,   is not a priori negligible and,   in fact,   could even dominate 
y — • 

the uniform field torque term p(cp  ).    To compute s„ we take <p_JT) as given by (V-85) and,   re- 

calling the definition of \  (V-53),   obtain 

;      \       I/2     >V3 ,-,2     v     -2/3   -1/3 , _.   I       ,.,i2 ....   .,. s^{<po) =  2  (e   po>        C°°     L    X* cos(<^o-*)   |<p_(0)| . (VI-13) 

The initial ripple amplitudes are given by (111-39) and,  converting the sum to an integral [see 

(111-44) I,   we find 

...   2     ,1/3 /rroC°o\2   1   f° -2/3   -1/3.,   .      2.2,-3/2 /Tr  C 

0   (0)+TT/2 

J0(O)-n/2 "k 

n0   \V)TTT/ c ~ 
x kdk \    ° (1+g)       cos(<p    - *) d*       . (VI-14) 

-l„   lr\\ _TT/? U" ° 

We have used (V-59) to relate 0       to 0    ,  and it must be remembered that the solution for 0   (T) 
-k k k 

we are integrating is valid only for  | * |  « *   .    The second integral in (VI-14)  is 

/-, 

I      =C (1   + \2k2 + X     L-1x   sin2*)"2  cosh(T)  -*]d*  - I   ^4/7 (VI-15) 
-w/2 (a b) 

where 

a = 1 + \2k2 (VI-l6a) 

b=\mL_1x (VI-l6b) 

_1 
and we have made use of the fact that for k = 0(X      ),   b » a.      The main contribution to I,   is 

2 e *        -1 
from *   b/a < 1; using (111-37),   (V-74-1),   and (V-53),   we see that for components with k = 0(X ~  ) 

*o^8V"o)2/3       • <VI-17> 
_1 

Since \,   A,   and h    are all —1,   if X » p       (we recall that X » 1 and the limit p    -* 0 is excluded), 

then 

*2 - » 1 (VI-18) o   a v ' 

and only components for which our solution is valid contribute to I. .    But for typical values of 
2 

the parameters involved,   (VI-18) is satisfied only marginally,   e.g.,  *   b/a =* 2.    However,  as 
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noted in the footnote on p. 58,  the solution may be extended to | * | < *    without serious error. 

We estimate the possible error in I    to be +20 percent. 

Equation (VI-14) now becomes 

tTrC 
1   ,   2    ,1/3  /lroM     I L\l/2 T ,  , 

=   2   <e   Po] l^A—)     \1T) IkCOS"(T) (VI-19a) 

where 

. f°°   ~l/6   -1/3  ... 2, 2. 2, 2.-3/2 
Ik = J      XX [(1 + rQk )  (1 + \gk )] kdk (VI-19b) 

W e evaluate I,   by the same method used to find 6    on pp. 27-29,   with the result 

•k-'
Ar (i + xe

2kV3/2k7/6dk 

1/6   -13/6    7   3 

where I(p, q) is given by (111-65).    Thus 

2      13 
»     .1/3   C«r(12>  r(12> /rr0\\ -1/2    -13/6,2/3 

3    )   I "XT-1       X X '     L   '        COS T)  T) s6 = (e  ^ 
2  NJT 

(VI-20) 

(VI-21) 

It is convenient to express s„  in terms of the zero field magnetization dispersion 6   ,   given by 

(III-66) or (111-67) with A = 1,   and we finally obtain for the reaction torque contribution to a 

-2 

where 

-2/3 
€     s _ = h d  R cos TI(T) 

6        p o 

o 

(VI-22a) 

, 1/3-5/12 
d    = p        A 

o     ro 

/M
4
LV

3 

(VI-22b) 

(VI-22c) 

and 

C    = (9,1/3     ,13       .S_ 
r      K n' u12' u12' 

r<|>'2 

lr,|, 
= 2.45 (VI-22d) 

Before we investigate the effect of this reaction torque on the uniform mode,   it is helpful 

to recall the meaning of the factors in (VI-22a).    h    is the (constant) magnitude of the pulse field 

H  ,   normalized to the uniform anisotropy field  H._ = 2K  /M   .     The factor d    is  a  function  of 
p' ^J K __      o'     o o 

the initial state  of the  film and of the direction of H  ,   and with p    and A   given explicitly by 

(V-48e) and (111-32) is 

dQ = (sin \pp - <po(0) ]}1/3 {cos 2<po(0) + hb cos [0b - <pQ(0) ]}_5/l2 

For the case of a hard-axis bias field and an easy-axis pulse field [see (IV-19a, c) ] 

(VI-23) 
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•v»r»-\2>-v 12 

and for the case of zero bias [see (IV-19b) 

1/3 d    = (sin/3) ' 

(VI-23-1) 

(VI-23-2) 

The reaction torque coefficient  R is a function of the thickness and magnetic parameters of the 

film;  for a TPF,   R = 456 2 = 0.26.    The last factor,   cos TI(T) = cos [w   (T) - w   (0) ],   introduces 

an implicit time dependence into the reaction torque.    The change in sign of the torque at 77 = TT/2 

is expected,  since for k   ||  m (0) the rr 

parallel,   producing no reaction torque. 

is expected,  since for k   ||  m (0) the magnetostatic field and planar spin-wave components are 

C.    ROTATIONAL MAGNETIZATION REVERSAL:   DYNAMIC LOCKING 

The equations of motion of the uniform mode,   as modified by the ripple,   are [from (Vl-llb, c) 

and (VI-22a)] 

%<T) = Ph(T)] - - V cos T)(T) 

!?(T) = ao(T) • 

(VI-24a) 

(VI-24b) 

where the uniform torque [from (V-48b) ] is 

h 
p(T)) = -sin [T; + <pQ(0) - /3   ] - -5  sin [TJ + cp Q(0) 

P 
2JT   Sin2 ^ + %(0) 

P 

and 

V = h"2//3d R 
P o 

(VI-24c) 

(VI-24d) 

providing T   is in tf^,  given by (V-83a-c).    (The initial reaction torque is not  V,  but zero,  since 

M is in equilibrium.)    If  V  is small ("small" will be defined below),   rather than solve (VI-24a, b) 

we compare them to the corresponding equations with phenomenological damping,  (IV-27a,b), 

and verify the observation made in Sec. VI-A,   namely that the reaction torque results in an 

effective damping in the first quadrant and an effective anti-damping in the second.    An explicit 

solution for 77(7") would then show retardation in the first quadrant and acceleration in the second, 

with a net effect of somewhat slower switching since,   without damping,   the greater portion of 

the time for reversal is spent in the first 90°.    This may account for the anomalous damping 

observed in coherent rotation (see p. 2); however,  to compare theory and experiment on this 

point the intrinsic damping torque (—va ) should be included on the right side of (VI-24a),   and 

a machine computation becomes necessary. 

But now suppose that 

V COSTJ(T) > P[T)(T)J      for       0 < j < T^ (VI-25) 

where T^ is the smallest T in   K^ (usually TX « 1).    Then the effective torque 

Pefi(v) = P(v) - V COST; (VI-26) 

bi, 



becomes negative after a short initial buildup time for the reaction torque, and rotational reversal 

is prevented; the uniform mode has become locked.    However,  the inequality (VI-25) is sufficient 

but not necessary for locking,  which may occur later in the reversal process.    We define a crit- 

ical value of V,   V  ,   as the minimum value for which the uniform mode becomes locked-   this c 
will occur at an angle TJ   ,   with 0 < TJ    < 7r/2;   V    and 77    may be found most easily by a generali- 

zation of (IV-37): 

peff(r,c)  = 0 (VI-27a) 

p;ff(rjc) = 0      . (VI-27b) 

These relations determine 71    and either V    (at fixed field) or,   alternatively,   the critical pulse 

field h      for irreversible rotation through 77    (at fixed   R).    We shall adopt the second viewpoint, 

since the field is conveniently varied experimentally.    With the help of (VI-24c) and (VI-26), 

(VI-27a,b) become 

X since       + Y cos w      — -=c sin2<r>       = 0 (VI-28a) 
^oc ^ oc       2 -oc 

X cos w      — Y sin w      — cos Zw       =0 (VI-28b) ^oc ^oc oc 

where 

%c = „c + %(0) (VI-29a) 

1/3 X=-h      cos/3    - h,   cos /3,   - h   '     d   R sina>   (0) (VI-29b) pc p        b b        pc       o ^o 

1/3 
Y=h      sin/3    + h.   sin/3,   - h   '     d  R cos w   (0)       . VI-29c) pc ^p        b b        pc       o ^o 

We find from (VI-28a,b) the relations 

X = cos3«) (VI-30a) ^ oc 

Y = sin% (VI-30b) 

provided cp      > <p   (T   ),   from which we obtain the equation for the critical field 

x2/3 + y2/3 (VI-31) 

In Appendix D we examine (VI-31) for two field configurations of experimental interest 

((IV-19a,b)]. 

For w      < w   (T   ), locking occurs at the start of reversal — at some time between 0 and T 
oc      ^o    <*> °° 

Then to find the critical field we would compute the reaction torque from spin waves given,   not 

asymptotically,  but by (V-75) and (V-82a, b).    We shall not attempt this formidable integration, 

but instead make the rather crude assumption that R = 0 for T < T    .    Then in the limit T     -» 0, r 00 00 

the critical field is determined by the disappearance of the initial torque 

peff(0)  = 0 (VI-32) 
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from which we obtain 

2/3 
h   '     = d  R esc W    - (p   (0)]      . (VI-33) pc o l  p     ^o      ' 

Note that (VI-33)  implies a cube-law dependence of h      on the dispersion 6   ,   which should be 
pc r o 

very striking if it actually exists. 

We conclude with a general discussion of the critical field and its implications.    It should 

first be noted that for R = 0,   h      becomes h  . — the usual threshold field for irreversible uniform 
PC pt 13 

rotation [see (V-41)],   and (VI-31)  reduces to the Stoner-Wohlfarth asteroid 

(-h   . cos/3    - h,   cos/3,)2/3 + (h  . sin/3    + h,   sin/3,)2/3 = i       . (VI-34) pt p       b b pt p        b        'D 

Then from (VI-29b, c),   (VI-30a, b),   and (VI-31) 

9h 
 P£ 
3R 

1/3 cos[<p     -«p   (0)] 
= hY    d      ^-jjr ^-v— > 0      . (VI-35) 

R=0        Pt        °     8m^p-Vot) 

For small  R,   therefore,   h      — h   .  is proportional to  R,   and from (VI-22c) pc        pt       ^     r 

h      - h  , cc 6 2      for      R«l       . (VI-36) pc        pt        o 

We next note that for 

h    >h (VI-37) 
P PC 

rotational switching is modified but not locked by the ripple.    Thus we identify the field region 

(VI-37) with that of high-speed switching,   or "coherent rotation"  (region 3 of Fig. 1),   and the 

critical field h      with the threshold field for coherent rotation (h   , of Fig. 1).     Preliminary 
pc p3 i J 

experiments performed by T. D. Rossing and G. P. Weiss at the Laboratory have verified the 

dependence of this threshold on the bias field h, ,  as given by (VI-31).    (See Fig. D-2.)    If 6 

can be measured independently,   the dependence of h       on the magnetization dispersion,   as pc 
given by (VI-36) or its equivalent for  R  not small (see Appendix D),   should provide a sensitive 

experimental test of the theory.    Analogous with the replacement suggested on p. 42 to approxi- 

mately account for anisotropy effects,  we may replace  H,   in the solutions found in Sec. IV for 

cp    and a ,  by H    — H      and thereby approximately account for both anisotropy and spin-wave 

effects. 

For 

h   . < h    < h (VI-38) pt        p        pc 

m    starts to rotate but at some point in the first quadrant becomes dynamically locked by the 

magnetostatic field of spin waves propagating in the direction of m  (0) (LMR).    We identify the 

field region (VI-38) with that of intermediate-speed switching,   or "noncoherent rotation," 

(region 2 of Fig. 1),  and offer the following conjecture on the reversal process following locking: 

We have seen that the occurrence of dynamic locking depended on the relaxation time of initial 

ripple components not being short compared to the switching time.    However,  with the uniform 

mode locked these components can now relax,   either to the lattice or to components propagating 

in the instantaneous direction of m  ,   thereby losing their large magnetostatic energy and un- 

locking the uniform mode.    Thus we envisage a highly damped rotational process,  with switching 
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speed controlled by the spin-wave relaxation rate,   and with a threshold field h      (h  ? of Fig. 1). 

This is in agreement with experimental observations (see Sec. I),   but no quantitative assessment 
of switching speeds expected can be made until spin-wave relaxation processes are better under- 
stood,   or at least until relaxation times have been measured. 
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APPENDIX A 
NOTATION; PARAMETERS OF A TPF 

I. NOTATION 

The following subscripts appear on H (magnetic field),   T (torque = M X H),   and their Fourier 

components h     and t   : 
k k 

Subscript Meaning 

eff effective 

m magnetostatic (omitted in Sec. II) 
e exchange 

a anisotropy 

h external field (at an angle /3  to  i  ) 
p external pulse field (at an angle /3    to i ) 

The following subscripts appear on H (external field magnitude),   /3   (angle of external field 

to  i  ),   and  H  (=H/HT<r,   external field normalized to uniform uniaxial anisotropy field 

HK = 2Ko/Mo>: 

Subscript Meaning 

p pulse 
b bias 

pulse along — i    (easy axis):   /3i i  = n 

1 bias along  i    (hard axis):   /?.  = n/Z 

t ideal single-domain threshold 

c critical value for dynamic locking: 
coherent threshold 

II. PARAMETERS OF A TYPICAL PERMALLOY FILM (TPF) 

Parameter Symbol Value 

Gyromagnetic ratio 

Saturation magnetization 

Exchange constant 

Uniform uniaxial anisotropy 

Root-mean-square local anisotropy 

Mean crystallite boundary spacing 

Half-thickness 

Y 1.87 x 107 (oe sec 

M 
o 7.96 x 10 gauss 

A 10  erg cm 

K 
o 

3 
1.6 x 10 erg cm 

Kl 
4      -3 5 x 10 erg cm 

r o 

L 

1.25 x 10-6 cm 

5 x 10~ cm 

-3 
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APPENDIX B 

COUPLING OF RIPPLE  COMPONENTS 

Here we carry the iterative procedure that was used to find the equilibrium state of the 

magnetization one step further.    We shall find that the correction thus introduced,   which arises 

from coupling of the ripple components <p_^ (k ^ 0) by random anisotropy forces (but not from 
k 

contributions to the torque nonlinear in tp_^,   which are still assumed negligible),   is small 
k 

provided fluctuations of the magnetization from its mean direction are small or,   more precisely, 

provided 

k 
k#0 

In order to evaluate the mean square amplitudes   \ <p    |   ,   we will require ensemble averages 
  k 

of the form f_f_ where f    is the Fourier transform of a random function F(r) satisfying 
k k' -k k 

(III-9a-c).    To find this we first obtain a generalization of the autocorrelation function [see 

(111-10)] 

c_(?) = |   \   F(r' + r) F(r') e"lk ' r' d2r' (B-2) 

Following the same argument used to derive c  (r),   we find 

cjr)=7e"r/r°!y  e^V? 

—r    -r/r 
- F    e 6 

k, 0 

= c  (r) 6^ (B-3) 
k,0 

and using the inverse Fourier transform 

fif F(?) e_ik'r dZT (B-4) 

we have the result 

f   f = —^   \ \ F(r) F(r') e d  rd  r1 

k  k'-k        S    JJ 

1    P ,-,    -ik-r    ,2 
=  s  j   c (r) e d 

,2- 
r 

=  |f    |2 6 . (B-5) 
k k'n 
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We now turn to (III-23b) for the ripple components <p   ,   which we write in the form 
k 

k 

(n+1) k 1        V 

kVo 

(n) 
1   k1 

(k 7^0) (B-6) 

where 

U     = U       = K    cos Z<p    tMHcos(fl-»   ) + Ak2 + ZTTM 
2 x   sin2(* - w   ) 

•j* -j* o ^o o r      ro o A ^o 

K  A(l + gj 
° k 

(B-7) 

and (fi       is the n     approximation to (fl   .    Starting with 
k k 

^°'=0 (B-8) 

we rederive (111-35): 

(1) 
2U (B-9) 

Then the next iteration' gives 

(2) 1 
2U I 

q , P_ 
k-k'   k' 

k  \ k,_^0 K 

(B-10) 

with mean-square amplitude 

(2),2 _  I     (1),2 1 

k k 4U 
k   LXk'^0 

s 
q- -P-P -. 
k-k'  k'   -k 

U 
+ c.c. 

k'^0  k"^0 

q- -q-   -P-.P _ 
k-k'   k"-k   k'   -k" 

U    U 
k'   k" 

(B-ll) 

To find the ensemble averages in (B-ll) we first observe,   with the help of (B-4),   that 

q_^      p_^ p _^ may be written as a sum of terms each of which has a factor 
k-k1  k'   -k 

Q     P      P m,    m-.   m, 
12        3 

(B-12) 

t At this level of approximation there is also a correction to <p   , through the term—2     I    q      <p    of (lll-23a), 

(1) (2)        ° ^°  X * 
where <p    here is ip     .    This leads to a correction to <p_^    which, however, may be neglected since it is non- 

k* IT k* 
,. •       0) linear in cp      . 
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where Q        = Q(r) with  r   in cell m,,   etc.    However,   from (III-5a, b) we see 
1 

that 

P = Q = QP = QP    = 0 (B-13) 

and therefore each factor (B-12) vanishes (whether or not any of the m   are equal) so that 

q P_ P _ = 0 
k-k'  k'  -k 

(H-14) 

Similarly, 

.2„2 
Q      Q      P      P Q  P    6 6 m,    m,   m,    m„ m,,,m_,   mof m . 

12       3       4 12      3       4 
(B-15) 

so that the last ensemble average in (B-ll) may be split: 

<u -q_  ^P-* P- = <u ^ <u  _ p_ P ^ 
k-k'   k"-k   k'   -k"        k-k'   k"-k     k'   -k' 

= |q I2 IP_ I2 a_  _ 
k-k' k' k",k' 

(B-16) 

where we have used (B-5) for the second step in (B-16).    Inserting (B-14) and (B-16) in (B-11), 

we have the result 

         |q_|2|p^|2 

(2) ,2 _   ,     (1),21  _J_        V k -k' k1 

k k 4Uk  k'^0 

(B-17) 

But now let us assume (to be verified below) that the main contribution to the sum in (B-17) 

is from components with 

•1 
k'    « r (B-18) 

Then we see from (III-14) that  | q_^       |     is independent of k',   and since P    = Q ,   (B-17) may be 
k-k' written 

II2 II2 

               I F» . I                   I P_J 

k       k ^°        k' 

(B-19) 

Finally,   using (B-9) and (B-l),   we obtain the main result of this appendix 

(B-20) 

(1) where  6  is the magnetization dispersion with <p_^ = tp_^    .    The assumption (B-18) is then 
k k      , 

justified for exactly the same reasons that the term (r k)    was neglected in (111-60). 
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We conclude that 

ki2,|2-ki1,|2 (B-21) 
k k 

and it seems unlikely that further iterations will change  | tp_^      by very much.    Thus,   unless 
k 

(B-l) is violated (in which case the entire theory breaks down since the nonlinear torque terms 

will no longer be small),  the assumption we have made — that ripple components are uncoupled 
in static equilibrium (and also dynamically — see p. 43) — is indeed correct. 
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APPENDIX C 

ON THE WKB METHOD 

Consider the general linear,   homogeneous,   second-order differential equation,   which may 

be put in the normal form 

<p>< + F(x) <p = 0       . (C-l) 

We first show that a pair of solutions to (C-l) is 

(p{x) = h(x) J±(;[g(x)] (C-2) 

provided a generating function g(x) can be found for the potential F(x) such that 

2       3    p''  2       1   P"' 1 2     P'  ? 
F(x) = (g'p - |  (|r)    + I ^i- + (| ~ "  ) <|) (C-3a) 

2       r1' =  (g'l     - V (C-3b) 

where 

h  is given by 

(V) 

</>" =  [h" -h(g')2(l-^-)]j^(g) + [h'g' +  \ hg" -||  (g'J 

(C-3c) 

h(x) = (J)l/2       • (C-4) 

The proof requires only the Bessel function recursion relations 

f  J„(g> = -Wg) + J„+1(g) (C-5a) 

differentiating (C-2) twice with the help of (C-5a, b), we find 

2 

g 

XU^fgJ-J^g)]     . (c-6) 

so that (C-l) is satisfied if 

h" -h(g')2 (l - ^)= -Fh (C-7a) 
V        g   ' 

h'g' +  f hg" - | |  (g')2 = 0      . (C-7b) 

Equation (C-7b) may be written 

h'        1    P'        P" 2_ =  I  (i_ _ g   ) c-8) 
h        2   vg        gr/ 

which we integrate,   obtaining (C-4) (where a multiplicative constant,   clearly of no interest, 

has been set equal to unity).    Finally,   eliminating h from (C-4) and (C-7a) we arrive at (C-3a). 
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Equation (C-3a) has the significance that every g(x) generates an exactly soluble potential F(x), 

which depends on p.    If no  g  can be found for a given F,   it may be possible with some   v  to find 

a g such that F approximates F (and has the same zeros and poles) in some range '.R of x.    Then 

<p(x) = (§-)        J±[,[g(x)] (C-9) 

will be an approximate solution of (C-l) in !R.    We give a few examples of generating functions 

and their potentials: 

(a)    g(x) = Cx^ (HL ^ 0) 

F(x)<=  (Cp^   V for V-  ^ 

(b)    g(x) = C e \l\ 

F(x) = /(C2e2^x-,2) 

(c)    g(x) = C lnx 

F(x) =  (C2 +  |)"2 for      v =  { 

12-2 i 
=  (-r — v   ) (x In x) for      C = ±j 

We also note the asymptotic behavior of the solution (C-2),  which follows from the asymptotic 

expansion of the Bessel functions J    (g).    For 

g= |g| e1* (C-lOa) 

Isl »4 lz -»z\ (C-10b) 2   '4 

we lind 

^(x) "*  J~7Ti"   cos lg _ "7(±F +  "?H -TT < 0 < TT (C-lla) 

J^-r   exp[7ri(±v + |)] cos[g + | (±t- + |)] 0 < 0 < 2TT (C-llb) 

,y—   exp [27ri(±p +   2>l cos [g - 2 '*" +   2"''      ?r < 4> < 3TT       , (C-l lc) 

etc. 

This approach to the solution of (C-l) is especially appropriate if the potential is of the 

WKB form 

F(x) = [Af(x)]2 (C-12a) 

where 

\ » 1 (C-12b) 

and f(x) and its derivatives are O(l) in some range  l,i{    of x away from "free" points f(x) = 0. 

In particular,   if f(x) is slowly varying near a free point or has other unusual behavior there. 
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i.e.,   an inflection point,   the standard methods may fail,   and the procedure we now give may be 

useful.    For  x  in ft    we assume there exists a solution of the form 

<p(x) = exp 
ix rp 

«) cU (C-13) 

-1 -2 where x    is a constant.    Letting p(x) = p (x) + X      p,(x) + . . . ,   and dropping terms of 0(\     ),   we 

substitute (C-13) and (C-lZa) in (C-l) to obtain the usual WKB asymptotic solutions 

<P{x) 
1 

x in ft     \fl 
exp r x 

(C-14) 

Comparison of (C-14) and (C-l la) shows that the asymptotic value of the generating function for 

a WKB potential (C-12a) is 

g(x)  X f X f(«) d« = g(x) 
x in ft        Jx 

which is easily verified by substitution in (C-3a),   giving 

F(x) 

Now inserting (C-15) into (C-2) and (C-4),  we find that 

[\f(x)]2 [1 + OU"2) 

<p(x) 
in ft (I)1/Ej

±,
(i)^(x) 

(C-15) 

(C-16) 

(C-17) 

is an asymptotic solution of (C-l) and (C-l2a) for any v. 

The solution (C-14) breaks down,   of course,   near a free point f = 0.    But if a  v   can be 
~ 2 

found such that g(x) generates a close approximation to the potential [Xf(x)]    in a continuous 

range of x which includes both a free point and ft       then ip{x) will be a good approximation to 

<p(x) in that range.    For convenience we locate the free point in whose neighborhood we seek a 

solution at x = 0,   and expand f(x) about this point: 

f(x) = x^ 

where n > — 1. If f(x) is analytic at the origin,  then 

ji = 0 

f. 
J 

1 dJf 
Jl   dxJ 

(C-18) 

(C-19a) 

(C-19b) 
x=0 

and if there is a small residual potential at x = 0 (a "nearly free" point),   a j = 0 term may be 

included in (C-18) instead of the j = 1 term.     It is usually advantageous to have the lower limit 

x    in (C-15) coincide with the free point,  and with x    =0 the expansion of (C-15) about x = 0 is, 

from (C-18), 
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f 

i(x)  = \x^+1    J]    n + / + t   xJ       • <C-2°) 

Now suppose that for a continuous range $      of x,   which includes both the neighborhood of the 
free point and part of IR^,   g(x) may be approximated by the j = m term of (C-20) 

i(x) - j^ftTl x^+1      . (C-21, 

~ 2 Then g(x) generates a close approximation to [Xf(x)]    in ;R     providing 

" =   2(ji + m + 1) (C-22) 

as may be seen from example (a),   p.78 .    The requirement that  5!     and $     overlap is satisfied 

if there is some x     in  $     for which condition (C-lOb) holds: 

ZAP   |f    |   |x     \i/Zv »4   |i- ,2|       . (C-23) 

It may be that no suitable  '&     exists;   for example,   two terms of (C-20) might be required to 

connect the free point with 5t   .    Nevertheless,   it may be possible,  using (C-3a),  to find a g(x) 
~ 2 which approaches g(x) for  x  in 5t     and generates a good approximation to [\f(x)]    around the 

free point. 

To summarize,   (p(x) as given by (C-17) is an approximate solution to (C-l) and (C-12a) in 

ii!^ and   !R    ,   with g(x) given by (C-15) with x    =0 and  v by (C-22).    The asymptotic formulas 

(C-ll) nnay then be used to establish the connection between the coefficients of the solutions 
(C-14) in fR     on either side of the free point.    The approximate potential generated by g(x) differs 
from [Af(x)]2 by an amount given by the second term of (C-3b),   and this may be used to improve 
the approximation if necessary. 
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APPENDIX D 

THE  CRITICAL  FIELD 

In Sec. VI we obtained a critical field,   H      = H..h    ,   which we identified as the theoretical pc K pc 
pulse threshold for coherent,  high-speed switching     Equations (VI-31) and (VI-29b, c),   which 

determine h     ,   cannot in general be solved in closed form.    In this appendix we use graphical pc 
and numerical methods to find h      for the two field configurations of greatest interest. 

I.     HARD-AXIS BIAS FIELD - EASY-AXIS PULSE  FIELD 

In this,   the most frequently used arrangement, 

V*      '      0b = l (D"la) 

h
P~

h||      '      hb~hl <D-lb> 

<p  (0) = arcsin h, (D-lc) 

and therefore from (VI-29b, c) and (VI-23-1) 

X = h.jc-fxR (D-2a) 

Y = h, - f  R (D-2b) 
l    y 

where the reaction torque coefficient  R  is given by (VI-22c) and 

1/3     4/3     -5/6 
lie   hl       ^1 (D-3a) 

f -hf/v/v'6 <°-3b> y       11 c     l      el 

gL = Jl -h2 = cos<pQ(0)      . (D-3c) 

A necessary condition for Eq. (VI-31) to determine hii     is ip       > ip   (0),   or 

Y > h j3 

which leads to 

R<hl
2/3

gi
3/2 (D-4) 

where we have used the relation 

f h 
•f- = -^= tan<p   (0)       . (D-5) 
' Si O y     6l 

We shall assume that (D-4) is also sufficient for (VI-31) to be valid,  which is equivalent to 

assuming that r     « 1.    Equation (VI-31) is most conveniently solved for  R  (given hii     and h.) 

by the graphical method sketched in Fig. D-l,   where we have made use of (D-5).    In Fig. D-2 

we plot hii     vs h    with R  as a parameter. 
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1 
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f X = h     -f.R 
lie     * 

/\(0) 

J I 

Fig. D-l . Graphical construction used to find 
reaction torque coefficient R as a function of 
hard-axis bias field h and critical easy-axis 
switching field h ..    . 

THEORY: 

 EXACT 

 APPROXIMATE 

IG.P. W EISS  (unpublished) 
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3-24-5581 

0.2 

0.2 0.4 0.6 0.8 1.8 2.0 

lie 

Fig. D-2.    High-speed switching threshold curves with reaction torque coefficient  R as a parameter: 
theory and experiment (h      = h        with hard-axis bias field h  ). 
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For 

R>hi
2/3gi

3/2 (D-6) 

hii     is given in first approximation by (VI-33),   which becomes 

R3/2 

11       higi' 

However,  this expression may be seriously in error since it neglects the growth time of the 

reaction torque;   we show it as a dashed line in Fig. D-2. 

II.    ZERO BIAS  FIELD 

In this arrangement (which is more frequently used to study quasistatic than pulse switching) 

0     = * - J3        (0 < /3^f   f) (D-8a) 
p c 

hp - h       ,        hb = 0 (D-8b) 

cpQ(0) = 0 

and therefore 

X = h    cos/3 (D-9a) 

~ 1/3 
Y = h    sin/3 -(h    sin/3)'    R      . (D-9b) 

The condition for (VI-31) to determine h    is now 
c 

~ 2/3 
R < (tan/3)   ' (D-10) 

We solve (VI-31) for h    cos/3   as a function of h    sin/3   and  R,   and the result (with  R  a parameter) 
c c r 

is plotted in Fig. D-3. 

For 

R >(tan/3)2/3 (D-ll) 

(VI-33) gives the first approximation 

R3/2 

h    = —  (D-12) 
sin/3 

which is shown as a dashed line in Fig. D-3. 
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Fig. D-3. High-speed switching threshold curves with reaction 
torque coefficient R as parameter (hp3 = hc at an angle |3 to 
easy direction opposite initial magnetization). 
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